MINERVA

It's malware bedtime

Evasive Techniques:
An Introduction

Minerva Research Team

September 2016

research[AT]minerva-labs.com www.minerva-labs.com | © Copyright Minerva Labs Ltd. |1

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Executive Summary

Evasion techniques are a set of malware capabilities that evolved as a result of the need to avoid
execution within a hostile environment. Malware will test to detect traces of products belonging to
the following four categories, which may pose a potential threat to it:

Virtual machines and emulators — used for manual and automatic malware analysis.

Sandbox — used to learn the behavior of suspicious binaries in a controled environment.

Computer Forensics Tools — used by malware analysts to dissect malware samples.

Security Products — specific anti-virus and anti-exploitation products.

According to research conducted by Qualys, almost 89% of malware utilize at least one evasion or
anti reverse-engineering technique. The remaining 11% is significantly less sophisticated and can be
easily detected by existing, more basic solutions.

Up to now the computer security industry tried to hide from evasive malware or to prevent it using
classic methods. Minerva Anti-Evasion Platform creates an environment in which malware refrains
from execution, using the malware’s own strength against it.

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Table of Contents

EXECUTIVE SUMIMAIY ittt et et et et e e et et et e e e e e e e st e e e e s e e e e e et e e e et eeeaeaeeeeeeeeeeeeeeeaeeeneeenenenenens 2
What are EVasive TECHNIGQUES?cciciieiiiciiee ettt etee e e e te e e e e e tae e e e eabae e e e sataeeseeabaeesennseeesennsenas 4
The SUM OF All (MAIWAIE) FEAIS ..veeiiieeiieectie ettt e e rtte e e s ee et e e s te e e stte e steeeeteeensaeesnseesaseeenseeeanseeennnes 5
Classifying Malware's PRODIAsc.eeicuiieiiieceeccee ettt e e bae et e et e e nre e snaeeenns 5
Virtual Machines and EMUIGLOrS.......ooiviiiiiiiee ettt s e e sbee e 5
SANADOXES ..ttt s h e sttt et be e she e et e et e e beesaeesaneea 6
(00T 0] 0T =T gl oY= o Y (ol Ko o | £ SRRR 8
Yo [oTo T Y =T ol g} AV 2 o o [o1 £ RSP 9
Breaking the FOUMth Wall.......coo ittt et e e st e e s sata e e e snbaeeeennnneeeeas 11
SWAlOWING The REA Pill ...ttt e e s ree e e s abe e e e s eabee e e snbeeas 11
SEATIC AT ACES .ttt ettt st sttt b e b b e sae e st e et s 11
DAV aF: [0 o 1Tl Y o 4 =T £ RS 14
Hardware and X86 THICKS.cocuiiiriirieiierti ettt ettt sn e e re e sneesaee e 17
F AN AR AV T To] o I I =Tol oY] o [V =PRI 19
Different Needs and APPrOaCNES..........ueiiiciiieicciee ettt e e eetee e e e tae e e e ebae e e e baee e eenbaeeeennrenas 19
(600 gToI=F- 1[0 1=Y o | SO OSSPSR PPURROPRR 19
L] =T ot o o OO P P PPP RO 20
PreVENTION ..coiiiiiii e 20

(000 1161 1V 1Y o] 1 TR 21

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

What are Evasive Techniques?

For a criminal trying to pull off a a bank heist, busting through the front door with a shotgun pointed
at the cashier probably would’t be a recipie for success. The clever thief will disguise himself when he
spots security guards and cameras, and will attemp to sneak all the way to the vault. Malware authors
are much like "traditional" old-school criminals — just as a modern endpoint at an enterprise is a sort
of avault.

Untill fairly recently commiting a crime in cyber space was fairly easy. Defenses were sturdy but far
less complex than todays solutions and once bypassed the attacker had full control of his target.

The subsequent adoption of the defense in depth concept resulted in the deployment of multiple
advanced security solutions. This approach forced bad guys to adapt inorder to keep their buisnesses
running as they now needed to battle more than a single "security guard".

Instead of fighting against the army of "security guards" malware authors decided to embrace evasive
techniques as their response to the improved defenses. This approach enables cyber-criminals to pick
their fights, bypass some products and avoid others by acting as legitimate software. Evasive
techniques can be implemented in many ways but are usually added as a wrapping layer to a malicious
binary and at the same time maintaining its original malicious functionality intact. Adding this layer
of evasiveness is very common, as alluded to in reports by Qualys which suggest that almost 90% of
in-the-wild malware are employing evasive measures.! 2

Our paper will introduce the classes of malware "fears" and classify techniques employed by malware
authors in order to fool computer security products and avoid detection. In the final chapter we will
also go through the security industry response to the increasingly popular usage of these techniques.

1 https://blog.qualys.com/securitylabs/2012/07/30/how-malware-employs-anti-debugging-anti-disassembly-
and-anti-virtualization-technologies
2 https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-

Malware.pdf

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/
https://blog.qualys.com/securitylabs/2012/07/30/how-malware-employs-anti-debugging-anti-disassembly-and-anti-virtualization-technologies
https://blog.qualys.com/securitylabs/2012/07/30/how-malware-employs-anti-debugging-anti-disassembly-and-anti-virtualization-technologies
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf

MINERVA

It's malware bedtime

The Sum of All (Malware) Fears

Classifying Malware's Phobias

In order to better understand the usage of evasive techniques we need to think like the attackers and
understanding what it is that they are afraid of, and why. In order to do so, we grouped those "fears"
into four distinctive classes, each containing one genre of products searched for by malware.

In this section of the paper we will clarify what is included in each of these classes and why
cybercriminals are terminating their malware once they detect its presence.

Virtual Machines and Emulators

Defenders Use Cases
Analyzing malware often results in infecting the machines to check for behavioral analysis, and so
using virtual (or emulated) environment has four key advantages:

The defender can execute malware conveniently without putting his/her production
environment in immediate danger.

Rolling back infected machines to a clean state is quick, about x200 faster than similar physical
setups.

In some of the products it is possible to take a snapshot of the machine during the execution
of a malware sample. This enables uncomplicated simpler analysis and the ability to re-
observe its behavior in specific stages.

It is possible to run many instances of virtual machines in parallel on a single, powerfull,
hardware — enabling scalable automation of malware analysis.

Due to these factors we are seeing intensive usage of VMs and emulators for:

Manual malware analysis by a human analyst.

Automated analysis on a large scale, mostly as an infrastrucure to sandbox solutions.

What causes an attacker to refrain from attacking?

By detecting the presence of a virtual environment and halting any malicious activities — malware can
evade both manual and automatic analysis, killing two birds with one stone. And thereby making tests
for virtual environments very popular. Among the products we observed searched in the wild are:

VMware (multiple products)
Oracle's VirtualBox

QEMU

Xen

Bochs

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Sandboxes

Defenders Use Cases

This class of products enables the execution of malware in a controlled environment, tracing the
analyzed sample activity and providing easy access to its metadata. Modern sandbox solutions often
rate how malicious a given sample is, and trigger signatures to warn of specific dangerous properties
of a sample.

Signatures
Performs some HTTP requests
Queries information on disks, possibly for anti-virtualization
Checks the version of Bios, possibly for anti-virtualization
A process attempted to delay the analysis task by a long amount of time.
Steals private information from local Internet browsers
Collects information to fingerprint the system (MachineGuid, DigitalProductld, SystemBiosDate)

Installs itself for autorun at Windows startup

Screenshots

Figure 1: Signatures triggered by a sample analyzed by the Cuckoo sandbox

onitor and action script Random desktop files Threat Score: 74/100
ice Pack 1 AV Multiscan: 64%

Trojan.Generic
it || C Re-analyze

- Get your own cloud service or the full version to view all details.

n_

Figure 2: Hybrid-Analysis scoring a malicious sample

A sandbox can be used either as a filter to prevent execution of potentially hostile files in a "real"
environment or as a tool in the hands of the malware analyst, summarizing the actions of a given
sample.

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

If a malware will displays “good behavior” during its sandboxed execution it won't trigger any
signatures and subsequently achieve a low score. This may enable it to slip into the organization if the
sandbox is acting as a "gatekeeper"”, or to fool the malware analyst to think it is legitimate code.

We observed malware searching many sandbox products including:

- Cuckoo

- FireEye

- Threat Stream
- VirusTotal

- Joe's Sandbox
- Hybrid Analysis
- Anubis

- Sunbelt

Some of these products are obsolete, yet, still searched by malware.

KPYTbIE MTPOKCHU

Cymacluesjian packpyTka caira: *Boigog B TON = u G, nogustne

&« MporpamMmmMupoBaHue C/C++, C#, Delphi, .NET, Asm

[leTeKT BUpTYaJibHbIX MalUXH U OT/IafAUMKOB

O6cyxaenue & pazaene «C/C++, C#, Delphi, .NET, Asm», nasan(-a) xafon, 22.01.2010.

IOHUT ansg geTeKkTa BUPTYanbHbIX MaLUWH:

Code:

(modulecheck('SbieD11.d1l1')) //Sandboxie

S or (modulecheck('api log.dll')) //SunBelt
New Member or (modulecheck('dir_watch.dll')) //Sulbelt's Sandbox
Perucrpauma:
CoobweHus:
OnobpeHus: or (IsUsername('username’)) //ThreadExpert
2 A
SN or (IsUsername('USER')) //Sandbox
or (IsUsername('user')) //Sandbox 2
or (IsUsername('currentuser')) //Normal

or (Pos('c:\insidetm',Path)<> @) //Anubis

o

S

(DirEctoryExists('C:\analysis')) // Sunbelt 3

Figure 3:Thread from a russian underground forum discussing VM and sandbox evasion3

3 hxxps://forum[.]antichat[.]ru/threads/172671

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Computer Forensics Tools

Defenders Use Cases

Debuggers, decompilers, network sniffers and dynamic analysis tools are part of the arsenal used by
security researchers when they analyze malware. These tools give them the ability to study how a
given malware sample behaves, how it is operated and how it can be detected.

Attackers Motivation to Avoid

Once malware is dissected by a flesh and blood researcher any evasive technique can be countered.
Yet, handling this class of techniques may require advanced knowledge and consume significant
amount of time, and if those are not in find — the malware won't be analyzed.

We see a good example of such behavior in Hacking team's leaked data. As a provider of cyber-
warfare-class espionage tools, preventing analysis of their advanced assets was so critical to them that
they first deployed a basic implant called Scout. Once it was deployed it assessed if it is being analyzed,
and if so — prevented the upgrade to the advanced Solider and Elite implants.

In the image bellow you can see internal correspondence regarding blacklisted programs searched by
Scout. All but two are used for computer forensics analysis:*

Da: Alberto Ornaghi [mailte:a.ornaghi@hackingteam.com]
Inviato: venerdi 13 marzo 2015 16:04

A: Rosaric Armando Viscardi

Cc: Fabio Busatto

Oggetto: nuove articolo per KB

mi chiedono dal supporto di creare un articolo che indichi | software che se presenti sulla macchina target inibiscono l'upgrade.

questo e’ I'elenco:

"Explorer Suites”, # CFF Explorer Suite
“IDA Pro v", # IDA Pro vx.xx
"Wireshark",

"API Monitor",
"VMWare Tools™,
"WinPcap",
"aSyser”,

"\.MET Reflector”,
"~PE Explorer”,
"sgysAnalyzer”,
"Python .* volatility™,
"VirtualBox Guest Additions",
"Process Hacker”, # Process
"Mandiant Red Curtain”, #
"~0DSForensics”, #

direi che il titolo dell‘articolo potrebbe esszere: "List of softwares in blacklist that prevent the scout upgrade”.

grazie

Figure 4: Internal Hacking Team email regarding blacklisted processes

In the body of the email, one of Hacking Team's software architects asks another employee to write a
KB article explaining why it is impossible to upgrade their implant on the victim's machine in the
presence of the software mentioned above.

4 hxxps://wikileaks[.Jorg/hackingteam/emails/emailid/502287

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Endpoint Security Products

Defenders Use Cases

In an attempt to defend against sophisticated attacks — premium, old school anti-virus products
enhanced with extensive behavioral analysis and anti-exploitation modules were deployed as a
defensive measure. In some cases, multiple vendors were used to protect the same endpoint.

What causes an attacker to refrain from attacking?
Malware authors, often contend with cost/benefit issues when considering whether to attack a
potential target or not:

As software becomes more and more robust — exploits become pricier. Cyber-criminals wish
to maximzie the usage of each exploit before it is detected and a patch is deployed. Anti-
exploitation products are likely to catch expensive exploits, dettering possible attacks by their
very presence.

Malware authors have underground services providing them the ability to test their malware
against up-tp-date copy of most AV and "next-generation" solutions. Avoiding 100% of the
products is quite difficult but avoiding most of them is achievable. "Releasing" a malware
which won't unpack and terminate in the presence of products detecting it will maximize the
time it is out in the wild, generating revenue for the people behind it.

A classic example of a class of malware that avoids security products is exploit kits. The common
scheme among exploit kits today is the use a "cheap" exploit, usually CVE-2013-7331 or CVE-2015-
2413, to test for the presence of security products. Only if the environment is rendered "safe" it
releases the pricy exploits enabling remote code execution (RCE).

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

MINERVA

It's malware bedtime
Here we have a thread from a shady Russian forum called "FuckAV" (our sincere apologizes for their
foul language). The thread contains a code exploiting CVE-2013-7331 and explanations of how this
code may help filter out unattractive targets. In this snippet the exploit is used to avoid endpoints with
files and folders implying the presence of Kaspersky and TrendMicro products.®

[O rersr w

[1)03-03-2016, 18:25

#1
|_ Porarop ans Ixcnnoiirnaka
frec
/1 TaK AnA NPOAO/IKeH¥A TeMbl COBPAN HECKONBKO CHUNETOB ANA CO3A@HIS POTATOPA SKCTNONTOB. 334EM HYXKEH POTATOP - OH HYKeH ANS GUNTPadi TPaguKa, 3 UMEHHO OT BUDTYanbHBIX MaLWH ¢ 6paysepani,
The Dark Side Ao ans oTceverys e #0C, nnaros. Potatop wecm noa orp: sKanoiiTa

Bpaysep Ha IKcnnoiT.
CHUNETB! B3ATHI C PA3HBIX PECYPCOB, Y3CTb A NOANPABMN, HEKOTOPLIE AETEKTATLCS M TaK HA4HEM.

DYHKLIA NPOBEPKIM Hannums daitna:
Koa:

function gs7sfd(txt) {
var vl = 'XM' + 'LD' + 'OM',
v2 = 'pa’ + 'rseE' + 'rr' + 'or’,
v3 = 'loa’ + 'dX' + 'ML',
v4 = 'DT' + 'D X' + 'HIML 1.0 Transitional’,
vs = 'err' + 'orC' + 'ode';
var resInf = new ActiveXObject("Microsoft.” + vl),
subpath = "c:\\Windows\\System32\\drivers\\" + txt + ".sys";
resInf.async = true;
resInf([v3] ('<!DOCTYPE html PUBLIC "-//W3C//' + v4 + '//EN" "res://' + subpath + '">');
Flo6naromapum scero: 950 if (resInf[v2][vS] != 0) {
A oo obliaes A var pe = resInflv2l,
err = "Error Code: " + pe[vS] + "\n";

err += "Error Reason: " + pe.reason;
err += "Error Line: " + pe.line;
if (err.indexOf("-2147023083") > 0) {

return 1;
} else {
return 0;
1
1
return 0;

DYHKLA ONPeAeNEHUA BUPTYanbHON MalMHb! Yepes Nposepky (aiinos B System32:
Koa:

var vm=false;
if (gs7s£d("k11") || gs7sfd("tmactmon”) || gs7sfd("tmcomm”) || gs7sfd("tmevtmgr”) || gs7sfd("TMEBC3
var vmetrue;

}

< [0 »

5 hxxps://fuckav[.]ru/showthread[.]php?p=145933

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Breaking the Fourth Wall

Swallowing the Red Pill

Malware authors’ motivation to avoid the four classes previously discussed is clear. But how do they
achieve this, what are these evasive techniques? The most primitive of them is simply "sleeping-
through" the sandbox, however— this technique is considered obsolete today as it is easily detected
by sandboxes and analysts.

It turns out that by querying the OS for the presence of specific artifacts it is possible to determine if
the execution environment is hostile or not.

Here we will focus on the artifacts scanned for by malware and will provide examples of each of the
categories presented. We will also show how in-the-wild malware searches for them. Please note that
we cannot cover all of the possibilities for detection of a given artifact as there are too many to list
here — some that are yet to be discovered by malware authors themselves.

Static Artifacts

This is a class of artifacts which are persistent in nature, and thus provide a higher level of certainty
while testing for the presence of defensive tools.

Registry Keys and Values
The Windows registry is a hierarchical database storing Windows and other app settings. Almost all
installed software creates registry keys and values.

One convention exploited by cyber criminals is that most products add a registry key under
HKLM\SOFTWARE with its name. This enables them to test for the presence of specific products by
going through the keys listed.

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Ransomware such as TeslaCrypt and Locky are good examples of malware searching for AV products
by this key. This for example is an execution of a TeslaCrypt 3 sample® on a machine where the registry
key HKLM\SOFTWARE\ESET is present:

File Edit Event Filter Tools Options Help

|sd | ABE | $A® | 8 A5 | (B A(ZW

Time ... Process Name PID Operation Path Result Detail
7.164... W TeslaCryptexe 2920 @fRegOpenKey HKLM\SOFTWARE\ESET SUCCESS Desired Access: R...
7:164... [TeslaCryptexe 2920 @{RegCloseKey ~ HKLM\SOFTWARE\ESET SUCCESS
7:16:4... [TeslaCrypt exe 2920 &% Thread Exit SUCCESS Thread ID: 292, Us...
7:16:4.. [@TeslaCyptexe 2920 @%RegOpenKey — HKLM\Software\Microsoft\Windows NT\CurrentVersion\GRE _lnitialize SUCCESS Desired Access: R...
2920 @RegQueryValue HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\GRE _lnitialize\DisableMetaFiles NAME NOT FOUND Length: 20
2920 @{RegCloseKey HKLM\SOFTWARE\Microsoft\Windows NT\CumentVersion\GRE_Initialize SUCCESS
2920 &% Thread Bxit SUCCESS Thread ID: 4068, ...
2920 &% Process BExit SUCCESS Exit Status: 0, User...
2920 @fRegCloseKey ~ HKLM\System\CurrentControlSet\Control\Nis\Sorting\Versions SUCCESS
2920 @¢RegCloseKey ~ HKLM\System\CurrentControlSet\Control\Session Manager SUCCESS
2920 @%RegCloseKey ~ HKLM SUCCESS
2920 @¢ReqCloseKey ~ HKCU SUCCESS
2920 @8ReqCloseKey HKCU\Software\Classes SUCCESS
2920 @8 ReqCloseKey HKCU\Software\Classes SUCCESS
Showing 14 of 54,330 events (0.025%) Backed by virtual memory

Figure 5:TeslaCrypt 3 terminates after assuming ESET is installed

The sample terminates immediately after it assumes that ESET is installed. The result can be compared
with this following trace, demonstrating execution of the same malware on the same machine but
without the registry key:

cess Mo Www. s
Filer-Edit> Event = Filter Tools Options Help
[BEd | QBE | 2A® | B #5 | E AW

Time ... Process Name PID Operation Path Resutt Detail |
7:224.. [TeslaCyptexe 3068 @{ReqOpenKey HKLM\SOFTWARE\ESET NAME NOT FOUND Desired Access: R... =
7:22:4... [#ITeslaCrypt exe 3068 @¢ReqOpenkey HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\Tesla... NAME NOT FOUND Desired Access: Q...

#5 ;Process Create C:\Users) \Desktop\TeslaCrypt exe SUCCESS PID: 4076, Comma..

7:224... [|TeslaCrypt.exe 4076 &% Process Start SUCCESS Parent PID: 3068, ...

7:22:4.. [TeslaCryptexe 4076 &F Thread Create SUCCESS Thread ID: 308

7:22:4... [TeslaCrypt exe 3068 @{RegOpenKey HKLM\System\CumentControlSet\Control\Session Manager\AppCertDils REPARSE Desired Access: Q...

7:224... [FTeslaCryptexe 3068 @fRegOpenKey — HKLM\System\CumentControl Set\Control\Session Manager\AppCertDlis NAME NOT FOUND Desired Access: Q...

7:224.. [TeslaCyptexe 3068 @%ReaOpenKey HKLM\System'\CurentControlSet\Control\SafeBoot\Option REPARSE Desired Access: Q...

7:224... [WTeslaCryptexe 3068 @{RegOpenKey — HKLM\System\CumentControl Set\Control\SafeBoot\Option NAME NOT FOUND Desired Access: Q...

7:22:4... W TeslaCrypt exe 3068 ‘RegOpenKey HKLM\Software'\Policies\Microsoft\Windows\Safer\Codedentifiers SUCCESS Desired Access: Q...

7:224.. [TeslaCyptexe 3068 @4ReqQueryValue HKLM\SOFTWARE\Policies\Mi Windows\safer\codeidentifiers\Tr Enabled NAME NOT FOUND Length: 80

7:224.. [WiTeslaCyptexe 3068 @RegQueryValue HKLM\SOFTWARE\Policies\Microsoft\Windows\safer\codeidentifiers\AuthenticodeEnabled SUCCESS Type: REG_DWO...

7:22:4... [#TeslaCrypt exe 3068 @fReqCloseKey HKLM\SOFTWARE\Policies\Microsoft\Windows\safer\codeidertifiers SUCCESS

7:224.. [®iTeslaCyptexe 3068 @ReqOpenKey — HKCU\Software\Policies\Microsoft\Windows\Safer\Codeldertiiers NAME NOT FOUND Desired Access: Q...

7:22:4... [2TeslaCrypt exe 3068 @¢RegOpenKey HKLM\System\CumentControlSet\Control\SafeBoot\Option REPARSE Desired Access: Q...

7:224.. [®iTeslaCyptexe 3068 @ReqOpenKey HKLM\System\CurmrentControl Set\Control\SafeBoot\Option NAME NOT FOUND Desired Access: Q...

7:22:4... W7 TeslaCrypt exe 3068 ‘RegOpenKey HKLM\System"\CurmentControl Set\Control\Session Manager\AppCompatibility REPARSE Desired Access: Q... -
Showing 1,781 of 43,517 events (4.0%) Backed by virtual memory

Figure 6: The same sample feels "safe", deploying its next stage

Not only does it continue its execution, but also starts to unpack a secondary stage to a new instance
of itself.

® SHA-256: ca7cb56b9a254748e983929953df32f219905f96486d91390e8d5d641dc9916d

http://www.minerva-labs.com/

MINERVA

It's malware bedtime

Almost any installed program writes itself to the disk. Previously we saw that exploit kits halt the

infection process in the presence of specific files — but many other types of malware halt its execution
as well.

This for example is the main function of the IRONGATE SCADA targeted malware, note that before it
performs malicious activity, it calls the function detect VMware:’

"Installing scada update...”
detect_vmware () :
time.sleep(10)
Installation complete.™

extracted file = e

extract_embedded_file (SHARES BASE64, SHARES EXECUTABLE FILENAME)
shares = get_shares()

delete_file no_errors(SHARES EXECUTABLE FILENAME)

‘or share_path in shares:
hot_folder full path = find hot_ folder(share_path)
if hot_folder full path:
if not extracted file:
extract_embedded_file (SCADA BASE64, FILE TO_COPY)
i extracted file =
print "FOUND: "™ + share_path
move_file over shares(hot_folder full path)
print "File Moved"™
"Installation complete.”

Figure 7: IRONGATE main function

In this function it checks whether known VMware drivers are present in the system folder — and
terminating itself if they are found:

detected = F:

th OpenKey (HKEY LOCAL MACHINE, r"SOFTWARE\\VMware, Inc.\\VMware Tools") as key:
detected =
Exception, e:

print (e)
indows_path = os.environ['WINDIR']
os.path.isfile(os.path.join{ dows_path, r"system32\drivers\vmmouse.sys"
os.path.isfile(os.path.join(windows_path, r"system32\drivers\vmhg

detected =

n detected

Figure 8:IRONGATE's VMware detection function

7 https://www.fireeye.com/blog/threat-research/2016/06/irongate ics malware.html

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/
https://www.fireeye.com/blog/threat-research/2016/06/irongate_ics_malware.html

MINERVA

It's malware bedtime

This class of artifact contains less reliable artifacts which may exist only temporarily. Generally,
searching for these indicators is not as effective as searching for the static ones, but it enables
detection of a wider range of products that either hide their static artifacts successfully, or simply
don't have traceable files or registry artifacts.

"A process is an executing program", as Microsoft defines it.® When analyzing a malware, either
manually or automatically, the analyst uses many programs — not hidden by default. Moreover,
security products such as anti-virus usually have multiple processes focused on protecting the machine
on the one hand, and displaying a nice user interface on the other.

Here, we see an example for an air-gap-leaping APT called USB Thief® searching Kaspersky's AV process
that is in charge of the graphical user interface:

HEE1FEA|] - 58 FLISH ERX FrocessIO => @ (@.)

HEEIFEE(] - &R B2 PLUSH 2 Flags = TH22CS_SHAPPROCESS
HEE1FED|) - 2985 EBFCFFFI MOV DWORD PTR S5: CLOCAL. 2861, EAM

GEE1Fes|) - FFLS 1881611y CALL DWORD PTR OS: [{&KERMEL32.CreateToo|LKERMELSZ2. CreateToo lhe Ip2325Snapshot
GEE1FES) - 2985 E4FCFFFI MOUV DWORD PTR SS: CLOCAL.2811, EAX

HEE1FEF|) - 23F8 FF CHP ERH,.-1

BEE1FF2() -~ BF24 Flol@sal JE 18881959

EEE1FEE| . 208D FEFCFFFILER ECH, CLOCAL. 1981

HEE1FFE(l » Bl FILISH ECH HragZ = OFFSET LOCAL. 122

HEE1FFF|| - 58 FPLUSH ERX [nrgl

AEE17EE|] « FFIS B4816111 CALL ODWORD PTR DO5: [{&KERMEL3Z.Process32lkkernel32.Process32F irstll

HEE1FEE|] « BECA TEST ERX,ERAX

AAE1FES|| -~ BFS4 CAAlA881 JZ 1888194E

GAE1FEE|] - 8BFF MoV EDILECT

GEE1F2E | > 807D Ca LEAR EDI CLOCAL. 18]

aaai7oz|| - €785 EcFoFFF| MOV DwoRo PTR S5: [LOCAL. 1991,8

HEEIFI0] - 2049 BE@ LEA ECH, [ECH

HEE1FRE] > 2085 14FDFFF LER EHX [LDEHL 1291

HEE1FRG(] - 5@ PUSH E Hig2 =X DFFSET LDCHL 199, current process
HBABLIFAF| - &7 [ﬂrgl = CODE "avpu i.ene’
R EZ eEFcHREE EHLL 18888E18 i stageS 1@BBSEIB. Wwosiomp [string comparcison)

Figure 9:USB Thief testing if avpui.exe process exists

In this case it is implemented by calling the CreateToolhelp32Snapshot Windows API to obtain a list of
running processes, and then comparing their names against a blacklist of the AV solutions' processes
detecting the malware. If any of the processes on the list is found — the malware terminates
immediately.

8 https://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx
% http://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx
http://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/

MINERVA

It's malware bedtime

Window Handles

Windows processes tend to have a graphical window-like interface. Malware can try and detect this
object as demonstrated here by Mark Vincent Yason at Black Hat USA way back in 2007:1°

; push NULL ;
! push .s5zWindowClassOllyDbg !
, call [FindWindowA] ,
E test eax,eax E
! Jnz .debugger found !
push NULL
: push .szWindowClassWinDbg :
: call [FindWindowA] :
E test eax,eax E
: Jnz .debugger_ found .
! .szWindowClassOllyDbg db "OLLYDBG",O
+ .szWindowClassWinDbg db "WinDbgFrameClass",0 :

Figure 10: detecting OllyDbg and WinDbg by their windows

In this case the FindWindowA API will return true if OllyDbg or WinDbg debuggers are running.

Current User Name

Some sandbox solutions and malware analysts show little creativity when selecting a username for
their analysis machine. Malware takes advantage of this lack of creativity and can easily test it against
a blacklist prior to unpacking itself. In the example bellow we see a malware call the GetUserNameA:

o VUILU/ /7B SV m}\
+ |001D077C| FF 93 A9 09 00 00 call dword ptr ds:[ebx:945] [ebx+9A9]: GetUserNameA
« [001D0782| 09 CO or eax,eax
-+ | 001D0784| 74 53 je 100709
i | 001D0O786| FF 75 F8 push dword ptr ss:[febp-8J
i *|looipo789 8D 85 F8 FB FF FF lea eax,dword ptr ss:[febp-408)
i | 001D0O78F| 50 push eax
i «|001D0730| FF 93 A5 09 00 00 €& dword ptr ds:[ebx+9A5] [ebx+9A5] :CharupperBuffaA
| +||001D0796| 80 AD F8 FB FF FF 53 sub byte ptr ss:|[ebp-408],53
ri--+ [00100790 75 3A jne 100709
i1 «|001D079F| 80 AD F9 FB FF FF 41 |sub byte ptr ss:[ebp-407],41
r-ra--+ [001D07A6| 75 31 jne 1D07D9
{11 | 001D07AB| 80 AD FA FB FF FF 4E sub byte ptr ss:|[ebp-406],4E
r-r-ra--¢ || 001D0O7AF| 75 28 jne 1D0O7D9
i 111 «|001D0781| 80 AD FB FB FF FF 44 |sub byte ptr ss:[ebp-405],44
(-r-r-ra--+ [001D0788| 75 1F jne 1D07D9
{1111 «|001DD7BA| 80 AD FC FB FF FF 42 sub byte ptr ss:|[ebp-404],42
(=1-r-r-ra--¢ || 001DO7C1| 75 16 jne 1D0O7D9
111111 «looiDo7c2| 80 AD FD FB FF FF 4F sub byte ptr ss:|[ebp-403],4F
~1-1-r-r-ra--+ (| 001DO7CA| 75 OD jne 100709
111111 «|00iDO7CC| 80 AD FE FB FF FF 58 |sub byte ptr ss:[febp-402J,58
ra-1-1-r-r-ra--+ (| 001D07D3| 75 04 jne 1D07D9
t1111111 «looipo7Ds| €6 45 FC 01 mov byte ptr ss:[ebp-4],1
till il lse/001007D3| OF B6 45 FC movzx eax,byte ptr ss:febp-4]

Figure 11: detecting sandbox by logged the current user's username

At first glance it seems like a legitimate piece of code, but when inspecting the series of conditional
jumps closely, we see that it compares the retrieved value with the hardcoded string "SANDBOX". If
this is indeed the username — the malware terminates immediately.

10 https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf

http://www.minerva-labs.com/
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf

MINERVA

It's malware bedtime

If a malware is executed on a machine that has no man behind it — malware authors used to believe
that the mouse cursor will stay at the same position.

It is easy to implement such a test, as demonstrated in the following code snippet:!!

- gensandbox mouse act () |

POINT positionl, position2;
os (&positionl)

Figure 12: testing cursor position difference

This test can be easily countered by randomly moving the mouse around the screen, as is implemented
in many sandboxes. This for example is the Cuckoo function in charge of that tactic:*?

RESOLUTICH =
RESOLUTICH["x"])

RESOLUTION["v"™])

17
V)

Figure 13: moving the cursor randomly, countering the above evasion technique

It is a cat-and-mouse (pun intended) game, as the bad guys create more complex "Turing tests" to
detect whether they are interacting with a human or not (e.g. — popping up a window and waiting for
a user to click its button).

1 https://github.com/aOrtega/pafish/blob/d13b9cb1d07f132b2071ee5d72e786e91b6a20e3/pafish/gensandbox.c
12 https://github.com/cuckoosandbox/cuckoo/blob/master/analyzer/windows/modules/auxiliary/human.py

research[AT|minerva-labs.com www.minerva-labs.com 16

http://www.minerva-labs.com/
https://github.com/a0rtega/pafish/blob/d13b9cb1d07f132b2071ee5d72e786e91b6a20e3/pafish/gensandbox.c
https://github.com/cuckoosandbox/cuckoo/blob/master/analyzer/windows/modules/auxiliary/human.py

MINERVA

It's malware bedtime

The evasion techniques in the above classes were very straightforward, searching directly for traces
of the products we discussed in the first part of the paper. In this section we will focus on more
complex techniques which require an understanding of low-level computer mechanisms and direct
usage of x86 instructions.

This technique was introduced by a Polish security researcher named Joanna Rutkowska, possibly one
of the most famous methods to detect virtualized environment.! She detected a correlation between
the location of the interrupt descriptor table (IDT) in memory, and virtualization products.

swallow redpill () {

signed char m[2+4], rpill[]
((unsigned*) &rpill[3]) (unsigned)m;
\7

(void (*) ()) &xrpill) () ;
return (m[5]>0xd0) ? 1 : 0; // retur:

Figure 14: implementation of the Red Pill technique, full explanation is available in the reference

This is a result of the fact that each machine running a VM has only a single register holding the address
of the IDT, but at least two OS (host and guest) sharing memory between them. The virtual machine
manager (VMM) has to prevent collisions between them, so it allocates the guest IDT to constant
addresses, as Rutkowska observed.

13 https://web.archive.org/web/20070110201418/http://www.invisiblethings.org/papers/redpill.html

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/
https://web.archive.org/web/20070110201418/http:/www.invisiblethings.org/papers/redpill.html

MINERVA

It's malware bedtime

Since the introduction of the original Red Pill, both researchers and malware authors have found new
ways to detect whether the malware they are running is in a VM by using x86 instructions and often
undocumented, low-level Windows API functions.

Examples are:

Unique CPU Vendor Detection— when the CPUID instruction is executed and the EAX register
contains the value 0, the vendor of the CPU will be written as a 12-charechter ASCII string to
the EBX, ECX and EDX registers. If not configured explicitly to display another value. VMs and
emulators will return distinct unique values such as "VMwareVMware" or
XenVMMXenVMM".

Timing Attacks — It is possible to use low level APIs and instructions to observe slight changes
in the time it takes to execute a given binary on a physical and on a virtual machine. One
method is calling the RDTSC instruction directly multiple times — while on a physical machine
the returned values from consecutive calls will have very minor diffrences. VMs however, will
typically return values with much higher differnces. However, this test is known to be
somewhat inaccurate.*

Processor Count — using low-level Windows API enables access to internal OS structures such
as the process environment block (PEB). This structure contains sensetive information about
the machine's hardware including the number of processors it contains. In some sandbox
solutions there is only a single processor, which is very much unlike the majority of modern
PCs — providing malware yet another way in which to determine whether or not it's in a
sandbox.

14 http://blog.badtrace.com/post/rdtsc-x86-instruction-to-detect-vms/

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/
http://blog.badtrace.com/post/rdtsc-x86-instruction-to-detect-vms/

MINERVA

It's malware bedtime

Anti-Evasion Techniques

Owing to the fact that evasion techniques have become more prevalent, the information security
industry needed to react and try to counter-punch. Each category of products has its own motivation
to handle a malware implementing evasion techniques, and this part of the paper will cover why and
how this is accomplished.

Sandboxes aspire to reflect the execution of a sample in a real machine, and if it successfully detects
a sandbox environment, the sandbox will have ostensibly failed its mission. Modern sandbox products
mask their presence to avoid this "observer effect". Tools such as pafish enable everyone to achieve
similar results and are mostly free of cost.

i Paranoid Fish is paranacid

Paranoid fish

traced?

Figure 15: pafish execution, explaining the user how malware may detect its sandbox

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/
https://github.com/a0rtega/pafish/tree/master/pafish

MINERVA

It's malware bedtime

Detection

Endpoint Security Products Behavioral Analysis

Anti-virus and NG solutions may classify some evasive techniques as suspicious, enabling them to
detect malware by usage of evasive techniques, just like any other type of suspicious behavior.
However, the problem of malware authors adapting to new solutions is still present — as they can
improve their techniques offline to avoid detection.

Sandbox Products

A good sandbox will not only hide indicators that expose it, but will also send out an alert when a
sample tries to perform evasive techniques. Here for example is a Cuckoo signature triggered as a
result of a sample searching a registry key typical to a VirtualBox-based VM:*®

Signatures

File has been identified by at least one Antivirus on VirusTotal as malicious
The binary likely contains encrypted or compressed data.

Detects VirtualBox using ACPI tricks

process: {u'process_name': u'msbird.exe', u'process_id': 1332}

signs: [{u'type’ u'api', u'value" {u'category': u'registry'. u'status': True, u'return': u'0x00000000', u'timestamp': w'2016-059-06 08:04:30,233", u'thread_id":
U752, u'repeated': 0, w'api. w'RegOpenkeyExA', uw'arguments': [{u'name’: u'Handle'. u'value': u'0x000000887, {u'name" u'Registry’, u'value': u'0x80000002'},
{u'name": u'SubKey', u'value'- W'HARDWAREWACPINDSDTWBOX_ '}, u'id" 431

Figure 16: Cuckoo detecting evasive techniques

Prevention

Malware almost by defenition is paranoid, it is trying to avoid detection by employing many advanced
evasion techniques which constitute its core strength, so we asked ourselves- why not to use the
malware’s strength against it? What would happen if we make the malware think that it is ina VM or
a sandbox being analyzed by a reseracher at all times— while in fact its already in the targeted
endpoint?

The concept of adding artifacts sought by malware is somewhat similar to the classic "vaccination"
idea existing since mid-1990's, but at the moment only Minerva Labs' products achieve a similar effect
by simulating an environment hostile to malware on each endpoint on an enterprise scale.

15 https://malwr.com/analysis/ODUyMWR]Yzc4Zjg2NDViYWEyM2FhODRhYmRjNTAzNjl/

http://www.minerva-labs.com/
https://malwr.com/analysis/ODUyMWRjYzc4Zjg2NDViYWEyM2FhODRhYmRjNTAzNjI/

MINERVA

It's malware bedtime

Conclusions

We started this paper with a comparison between malware authors and traditional criminals. We
found that in fact many malware authors are similar to legitimate software companies. They aspire to
be a profitable venture either by running a shady operation of their own or like in the malware as a
service (or MaaS) "business model"— and offer a superior product to their clients.

Evasive techniques are just one aspect of malware, but they are unique. At the moment we are witness
to a direct arms race between "good and evil", with each new malware adding more and more
sophisticated tests to be performed prior to the deployment of a payload. Internal competition
between "malware vendors" just increases the numbers of techniques added to malware, as
"clientele" often prefer the product offering them the ones containing the highest count of evasion
techniques.

This explosion in the number of evasive techniques looks frightening at first sight but it creates new
opportunities for defenders as well. Minerva's unique approach of simulating an environment hostile
to evasive malware, takes advantage of malware paranoia and forces it to pick its poison. Does it
terminate while trying to evade detection or perhaps give up on evasive techniques and get caught.
The fact that only a single artifact searched by a malware is required in order to halt its execution
makes Minerva's approach very potent and inspires optimism about the future of the war on malware.

research[AT|minerva-labs.com www.minerva-labs.com

http://www.minerva-labs.com/

