
 

research[AT]minerva-labs.com www.minerva-labs.com © Copyright Minerva Labs Ltd. 1 
 

Evasive Techniques:      

An Introduction 
Minerva Research Team 

September 2016  

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  2 
 

Executive Summary 
Evasion techniques are a set of malware capabilities that evolved as a result of the need to avoid 

execution within a hostile environment. Malware will test to detect traces of products belonging to 

the following four categories, which may pose a potential threat to it: 

 Virtual machines and emulators – used for manual and automatic malware analysis. 

 Sandbox – used to learn the behavior of suspicious binaries in a controled environment. 

 Computer Forensics Tools – used by malware analysts to dissect malware samples. 

 Security Products – specific anti-virus and anti-exploitation products. 

According to research conducted by Qualys, almost 89% of malware utilize at least one evasion or 

anti reverse-engineering technique. The remaining 11% is significantly less sophisticated and can be 

easily detected by existing, more basic solutions. 

Up to now the computer security industry tried to hide from evasive malware or to prevent it using 

classic methods. Minerva Anti-Evasion Platform creates an environment in which malware refrains 

from execution, using the malware’s own strength against it. 

  

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  3 
 

Table of Contents 
Executive Summary ................................................................................................................................. 2 

What are Evasive Techniques? ............................................................................................................... 4 

The Sum of All (Malware) Fears .............................................................................................................. 5 

Classifying Malware's Phobias ............................................................................................................ 5 

Virtual Machines and Emulators ......................................................................................................... 5 

Sandboxes ........................................................................................................................................... 6 

Computer Forensics Tools ................................................................................................................... 8 

Endpoint Security Products ................................................................................................................. 9 

Breaking the Fourth Wall ...................................................................................................................... 11 

Swallowing the Red Pill ..................................................................................................................... 11 

Static Artifacts ................................................................................................................................... 11 

Dynamic Artifacts .............................................................................................................................. 14 

Hardware and x86 Tricks ................................................................................................................... 17 

Anti-Evasion Techniques ....................................................................................................................... 19 

Different Needs and Approaches ...................................................................................................... 19 

Concealment ..................................................................................................................................... 19 

Detection ........................................................................................................................................... 20 

Prevention ......................................................................................................................................... 20 

Conclusions ........................................................................................................................................... 21 

 

  

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  4 
 

What are Evasive Techniques? 
 For a criminal trying to pull off a a bank heist, busting through the front door with a shotgun pointed 

at the cashier probably would’t be a recipie for success.  The clever thief will disguise himself when he 

spots security guards and cameras, and will attemp to sneak all the way to the vault. Malware authors 

are much like "traditional" old-school criminals – just as a modern endpoint at an enterprise is a sort 

of a vault. 

Untill fairly recently commiting a crime in cyber space was fairly easy. Defenses were sturdy but far 

less complex than todays solutions and once bypassed the attacker had full control of his target.  

The subsequent adoption of the defense in depth concept resulted in the deployment of multiple 

advanced security solutions. This approach forced bad guys to adapt inorder to keep their buisnesses 

running as they now needed to battle more than a single "security guard". 

Instead of fighting against the army of "security guards" malware authors decided to embrace evasive 

techniques as their response to the improved defenses. This approach enables cyber-criminals to pick 

their fights, bypass some products and avoid others by acting as legitimate software. Evasive 

techniques can be implemented in many ways but are usually added as a wrapping layer to a malicious 

binary and at the same time maintaining its original malicious  functionality intact. Adding this layer 

of evasiveness is very common, as alluded to in reports by Qualys which suggest that almost 90% of 

in-the-wild malware are employing evasive measures.1 2 

Our paper will introduce the classes of malware "fears" and classify techniques employed by malware 

authors in order to fool computer security products and avoid detection. In the final chapter we will 

also go through the security industry response to the increasingly popular usage of these techniques. 

  

                                                           
1 https://blog.qualys.com/securitylabs/2012/07/30/how-malware-employs-anti-debugging-anti-disassembly-
and-anti-virtualization-technologies 
2 https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-
Malware.pdf 

http://www.minerva-labs.com/
https://blog.qualys.com/securitylabs/2012/07/30/how-malware-employs-anti-debugging-anti-disassembly-and-anti-virtualization-technologies
https://blog.qualys.com/securitylabs/2012/07/30/how-malware-employs-anti-debugging-anti-disassembly-and-anti-virtualization-technologies
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf


 

research[AT]minerva-labs.com www.minerva-labs.com  5 
 

The Sum of All (Malware) Fears 

Classifying Malware's Phobias 
In order to better understand the usage of evasive techniques we need to think like the attackers and 

understanding what it is that they are afraid of, and why. In order to do so, we grouped those "fears" 

into four distinctive classes, each containing one genre of products searched for by malware.  

In this section of the paper we will clarify what is included in each of these classes and why 

cybercriminals are terminating their malware once they detect its presence. 

Virtual Machines and Emulators 

Defenders Use Cases 
Analyzing malware often results in infecting the machines to check for behavioral analysis, and so 

using virtual (or emulated) environment has four key advantages: 

 The defender can execute malware conveniently without putting his/her production 

environment in immediate danger. 

 Rolling back infected machines to a clean state is quick, about x200 faster than similar physical 

setups. 

 In some of the products it is possible to take a snapshot of the machine during the execution 

of a malware sample. This enables uncomplicated simpler analysis and the ability to re-

observe its behavior in specific stages. 

 It is possible to run many instances of virtual machines in parallel on a single, powerfull, 

hardware – enabling scalable automation of malware analysis. 

Due to these factors we are seeing intensive usage of VMs and emulators for: 

 Manual malware analysis by a human analyst. 

 Automated analysis on  a large scale, mostly as an infrastrucure to sandbox solutions. 

What causes an attacker to refrain from attacking? 
By detecting the presence of a virtual environment and halting any malicious activities – malware can 

evade both manual and automatic analysis, killing two birds with one stone. And thereby making tests 

for virtual environments very popular. Among the products we observed searched in the wild are: 

 VMware (multiple products) 

 Oracle's VirtualBox 

 QEMU 

 Xen 

 Bochs  

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  6 
 

Sandboxes 

Defenders Use Cases 
This class of products enables the execution of malware in a controlled environment, tracing the 

analyzed sample activity and providing easy access to its metadata. Modern sandbox solutions often 

rate how malicious a given sample is, and trigger signatures to warn of specific dangerous properties 

of a sample. 

 

Figure 1: Signatures triggered by a sample analyzed by the Cuckoo sandbox 

 

Figure 2: Hybrid-Analysis scoring a malicious sample 

A sandbox can be used either as a filter to prevent execution of potentially hostile files in a "real" 

environment or as a tool in the hands of the malware analyst, summarizing the actions of a given 

sample. 

 

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  7 
 

What causes an attacker to refrain from attacking? 
If a malware will displays “good behavior” during its sandboxed execution it won't trigger any 

signatures and subsequently achieve a low score. This may enable it to slip into the organization if the 

sandbox is acting as a "gatekeeper", or to fool the malware analyst to think it is legitimate code. 

We observed malware searching many sandbox products including: 

- Cuckoo 

- FireEye 

- Threat Stream 

- VirusTotal 

- Joe's Sandbox 

- Hybrid Analysis 

- Anubis 

- Sunbelt 

Some of these products are obsolete, yet, still searched by malware. 

 

Figure 3:Thread from a russian underground forum discussing VM and sandbox evasion3 

  

                                                           
3 hxxps://forum[.]antichat[.]ru/threads/172671 

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  8 
 

Computer Forensics Tools 

Defenders Use Cases 
Debuggers, decompilers, network sniffers and dynamic analysis tools are part of the arsenal used by 

security researchers when they analyze malware. These tools give them the ability to study how a 

given malware sample behaves, how it is operated and how it can be detected. 

Attackers Motivation to Avoid 
Once malware is dissected by a flesh and blood researcher any evasive technique can be countered. 

Yet, handling this class of techniques may require advanced knowledge and consume significant 

amount of time, and if those are not in find – the malware won't be analyzed. 

We see a good example of such behavior in Hacking team's leaked data. As a provider of cyber-

warfare-class espionage tools, preventing analysis of their advanced assets was so critical to them that 

they first deployed a basic implant called Scout. Once it was deployed it assessed if it is being analyzed, 

and if so – prevented the upgrade to the advanced Solider and Elite implants. 

In the image bellow you can see internal correspondence regarding blacklisted programs searched by 

Scout. All but two are used for computer forensics analysis:4 

 

Figure 4: Internal Hacking Team email regarding blacklisted processes 

In the body of the email, one of Hacking Team's software architects asks another employee to write a 

KB article explaining why it is impossible to upgrade their implant on the victim's machine in the 

presence of the software mentioned above. 

                                                           
4 hxxps://wikileaks[.]org/hackingteam/emails/emailid/502287 

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  9 
 

Endpoint Security Products 

Defenders Use Cases 
In an attempt to defend against sophisticated attacks – premium, old school anti-virus products 

enhanced with extensive behavioral analysis and anti-exploitation modules were deployed as a 

defensive measure. In some cases, multiple vendors were used to protect the same endpoint. 

What causes an attacker to refrain from attacking? 
Malware authors, often contend with cost/benefit issues when considering whether to attack a 

potential target or not: 

 As software becomes more and more robust – exploits become pricier. Cyber-criminals wish 

to maximzie the usage of each exploit before it is detected and a patch is deployed. Anti-

exploitation products are likely to catch expensive exploits, dettering possible attacks by their 

very presence. 

 Malware authors have underground services providing them the ability to test their malware 

against up-tp-date copy of most AV and "next-generation" solutions. Avoiding 100% of the 

products is quite difficult but avoiding most of them is achievable. "Releasing" a malware 

which won't unpack and terminate in the presence of products detecting it will maximize the 

time it is out in the wild, generating  revenue for the people behind it. 

A classic example of a class of malware that avoids security products is exploit kits. The common 

scheme among exploit kits today is the use a "cheap" exploit, usually CVE-2013-7331 or CVE-2015-

2413, to test for the presence of security products. Only if the environment is rendered "safe" it 

releases the pricy exploits enabling remote code execution (RCE). 

  

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  10 
 

Here we have a thread from a shady Russian forum called "FuckAV" (our sincere apologizes for their 

foul language). The thread contains a code exploiting CVE-2013-7331 and explanations of how this 

code may help filter out unattractive targets. In this snippet the exploit is used to avoid endpoints with 

files and folders implying the presence of Kaspersky and TrendMicro products.5 

 

  

                                                           
5 hxxps://fuckav[.]ru/showthread[.]php?p=145933 

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  11 
 

Breaking the Fourth Wall 

Swallowing the Red Pill 
Malware authors’ motivation to avoid the four classes previously discussed is clear. But how do they 

achieve this, what are these evasive techniques? The most primitive of them is simply "sleeping-

through" the sandbox, however– this technique is considered obsolete today as it is easily detected 

by sandboxes and analysts. 

It turns out that by querying the OS for the presence of specific artifacts it is possible to determine if 

the execution environment is hostile or not.   

Here we will focus on the artifacts scanned for by malware and will provide examples of each of the 

categories presented. We will also show how in-the-wild malware searches for them. Please note that 

we cannot cover all of the possibilities for detection of a given artifact as there are too many to list 

here – some that are yet to be discovered by malware authors themselves. 

Static Artifacts 
This is a class of artifacts which are persistent in nature, and thus provide a higher level of certainty 

while testing for the presence of defensive tools. 

Registry Keys and Values 
The Windows registry is a hierarchical database storing Windows and other app settings. Almost all 

installed software creates registry keys and values. 

One convention exploited by cyber criminals is that most products add a registry key under 

HKLM\SOFTWARE with its name. This enables them to test for the presence of specific products by 

going through the keys listed. 

  

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  12 
 

Ransomware such as TeslaCrypt and Locky are good examples of malware searching for AV products 

by this key. This for example is an execution of a TeslaCrypt 3 sample6 on a machine where the registry 

key HKLM\SOFTWARE\ESET is present: 

 

Figure 5:TeslaCrypt 3 terminates after assuming ESET is installed 

The sample terminates immediately after it assumes that ESET is installed. The result can be compared 

with this following trace, demonstrating execution of the same malware on the same machine but 

without the registry key: 

 

Figure 6: The same sample feels "safe", deploying its next stage 

Not only does it continue its execution, but also starts to unpack a secondary stage to a new instance 

of itself. 

  

                                                           
6 SHA-256: ca7cb56b9a254748e983929953df32f219905f96486d91390e8d5d641dc9916d 

http://www.minerva-labs.com/


 

research[AT]minerva-labs.com www.minerva-labs.com  13 
 

Files and Folders 
Almost any installed program writes itself to the disk. Previously we saw that exploit kits halt the 

infection process in the presence of specific files – but many other types of malware halt its execution 

as well. 

This for example is the main function of the IRONGATE SCADA targeted malware, note that before it 

performs malicious activity, it calls the function detect_VMware:7 

 

Figure 7: IRONGATE main function 

In this function it checks whether known VMware drivers are present in the system folder – and 

terminating itself if they are found: 

 

Figure 8:IRONGATE's VMware detection function  

                                                           
7 https://www.fireeye.com/blog/threat-research/2016/06/irongate_ics_malware.html  

http://www.minerva-labs.com/
https://www.fireeye.com/blog/threat-research/2016/06/irongate_ics_malware.html


 

research[AT]minerva-labs.com www.minerva-labs.com  14 
 

Dynamic Artifacts 
This class of artifact contains less reliable artifacts which may exist only temporarily. Generally, 

searching for these indicators is not as effective as searching for the static ones, but it enables 

detection of a wider range of products that either hide their static artifacts successfully, or simply 

don't have traceable files or registry artifacts. 

Processes 
"A process is an executing program", as Microsoft defines it.8 When analyzing a malware, either 

manually or automatically, the analyst uses many programs – not hidden by default. Moreover, 

security products such as anti-virus usually have multiple processes focused on protecting the machine 

on the one hand, and displaying a nice user interface on the other. 

Here, we see an example for an air-gap-leaping APT called USB Thief9 searching Kaspersky's AV process 

that is in charge of the graphical user interface: 

 

Figure 9:USB Thief testing if avpui.exe process exists 

In this case it is implemented by calling the CreateToolhelp32Snapshot Windows API to obtain a list of 

running processes, and then comparing their names against a blacklist of the AV solutions' processes 

detecting the malware. If any of the processes on the list is found – the malware terminates 

immediately. 

  

                                                           
8 https://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx  
9 http://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/  

http://www.minerva-labs.com/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx
http://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/


 

research[AT]minerva-labs.com www.minerva-labs.com  15 
 

Window Handles 
Windows processes tend to have a graphical window-like interface. Malware can try and detect this 

object as demonstrated here by Mark Vincent Yason at Black Hat USA way back in 2007:10 

 

Figure 10: detecting OllyDbg and WinDbg by their windows 

In this case the FindWindowA API will return true if OllyDbg or WinDbg debuggers are running. 

Current User Name 
Some sandbox solutions and malware analysts show little creativity when selecting a username for 

their analysis machine. Malware takes advantage of this lack of creativity and can easily test it against 

a blacklist prior to unpacking itself. In the example bellow we see a malware call the GetUserNameA: 

 

Figure 11: detecting sandbox by logged the current user's username 

At first glance it seems like a legitimate piece of code, but when inspecting the series of conditional 

jumps closely, we see that it compares the retrieved value with the hardcoded string "SANDBOX". If 

this is indeed the username – the malware terminates immediately. 

  

                                                           
10 https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf  

http://www.minerva-labs.com/
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf


 

research[AT]minerva-labs.com www.minerva-labs.com  16 
 

Mouse Movement and other "Turing Tests" 
If a malware is executed on a machine that has no man behind it – malware authors used to believe 

that the mouse cursor will stay at the same position. 

It is easy to implement such a test, as demonstrated in the following code snippet:11
 

 

Figure 12: testing cursor position difference 

This test can be easily countered by randomly moving the mouse around the screen, as is implemented 

in many sandboxes. This for example is the Cuckoo function in charge of that tactic:12 

 

Figure 13: moving the cursor randomly, countering the above evasion technique 

It is a cat-and-mouse (pun intended) game, as the bad guys create more complex "Turing tests" to 

detect whether they are interacting with a human or not (e.g. – popping up a window and waiting for 

a user to click its button). 

  

                                                           
11 https://github.com/a0rtega/pafish/blob/d13b9cb1d07f132b2071ee5d72e786e91b6a20e3/pafish/gensandbox.c  
12 https://github.com/cuckoosandbox/cuckoo/blob/master/analyzer/windows/modules/auxiliary/human.py  

http://www.minerva-labs.com/
https://github.com/a0rtega/pafish/blob/d13b9cb1d07f132b2071ee5d72e786e91b6a20e3/pafish/gensandbox.c
https://github.com/cuckoosandbox/cuckoo/blob/master/analyzer/windows/modules/auxiliary/human.py


 

research[AT]minerva-labs.com www.minerva-labs.com  17 
 

Hardware and x86 Tricks 
The evasion techniques in the above classes were very straightforward, searching directly for traces 

of the products we discussed in the first part of the paper. In this section we will focus on more 

complex techniques which require an understanding of low-level computer mechanisms and direct 

usage of x86 instructions. 

Joanna Rutkowska's Original Red Pill 
This technique was introduced by a Polish security researcher named Joanna Rutkowska, possibly one 

of the most famous methods to detect virtualized environment.13 She detected a correlation between 

the location of the interrupt descriptor table (IDT) in memory, and virtualization products. 

 

Figure 14: implementation of the Red Pill technique, full explanation is available in the reference 

This is a result of the fact that each machine running a VM has only a single register holding the address 

of the IDT, but at least two OS (host and guest) sharing memory between them. The virtual machine 

manager (VMM) has to prevent collisions between them, so it allocates the guest IDT to constant 

addresses, as Rutkowska observed. 

  

                                                           
13 https://web.archive.org/web/20070110201418/http://www.invisiblethings.org/papers/redpill.html  

http://www.minerva-labs.com/
https://web.archive.org/web/20070110201418/http:/www.invisiblethings.org/papers/redpill.html


 

research[AT]minerva-labs.com www.minerva-labs.com  18 
 

x86 Instructions and Low-Level WinAPI Abuse 
Since the introduction of the original Red Pill, both researchers and malware authors have found new 

ways to detect whether the malware they are running is in a VM by using x86 instructions and often 

undocumented, low-level Windows API functions.  

Examples are: 

 Unique CPU Vendor Detection– when the CPUID instruction is executed and the EAX register 

contains the value 0, the vendor of the CPU will be written as a 12-charechter ASCII string to 

the EBX, ECX and EDX registers. If not configured explicitly to display another value. VMs and 

emulators will return distinct unique values such as "VMwareVMware" or 

XenVMMXenVMM". 

 Timing Attacks – It is possible to use low level APIs and instructions to observe slight changes 

in the time it takes to execute a given binary on a physical and on a virtual machine. One 

method is calling the RDTSC instruction directly multiple times – while on a physical machine 

the returned values from consecutive calls will have very minor diffrences. VMs however, will 

typically return values with much higher differnces. However, this test is known to be 

somewhat inaccurate.14  

 Processor Count – using low-level Windows API enables access to internal OS structures such 

as the process environment block (PEB). This structure contains sensetive information about 

the machine's hardware including the number of processors it contains. In some sandbox 

solutions there is only a single processor, which is very much unlike the majority of modern 

PCs – providing malware yet another way in which to determine whether or not  it’s in a 

sandbox. 

  

                                                           
14 http://blog.badtrace.com/post/rdtsc-x86-instruction-to-detect-vms/  

http://www.minerva-labs.com/
http://blog.badtrace.com/post/rdtsc-x86-instruction-to-detect-vms/


 

research[AT]minerva-labs.com www.minerva-labs.com  19 
 

Anti-Evasion Techniques 

Different Needs and Approaches 
Owing to the fact that evasion techniques have become more prevalent, the information security 

industry needed to react and try to counter-punch. Each category of products has its own motivation 

to handle a malware implementing evasion techniques, and this part of the paper will cover why and 

how this is accomplished. 

Concealment  
Sandboxes aspire to reflect the execution of a sample in a real machine, and if it successfully detects 

a sandbox environment, the sandbox will have ostensibly failed its mission. Modern sandbox products 

mask their presence to avoid this "observer effect". Tools such as pafish enable everyone to achieve 

similar results and are mostly free of cost. 

 

Figure 15: pafish execution, explaining the user how malware may detect its sandbox 

  

http://www.minerva-labs.com/
https://github.com/a0rtega/pafish/tree/master/pafish


 

research[AT]minerva-labs.com www.minerva-labs.com  20 
 

Detection 

Endpoint Security Products Behavioral Analysis  
Anti-virus and NG solutions may classify some evasive techniques as suspicious, enabling them to 

detect malware by usage of evasive techniques, just like any other type of suspicious behavior. 

However, the problem of malware authors adapting to new solutions is still present – as they can 

improve their techniques offline to avoid detection.  

Sandbox Products 
A good sandbox will not only hide indicators that expose it, but will also send out an alert when a 

sample tries to perform evasive techniques. Here for example is a Cuckoo signature triggered as a 

result of a sample searching a registry key typical to a VirtualBox-based VM:15 

 

Figure 16: Cuckoo detecting evasive techniques 

Prevention 
Malware almost by defenition is paranoid, it is trying to avoid detection by employing many advanced 

evasion techniques which constitute its core strength, so we asked ourselves- why not to use the 

malware’s strength against it? What would happen if we make the malware think that it is in a VM or 

a sandbox being analyzed by a reseracher at all times– while  in fact its already in the targeted 

endpoint? 

The concept of adding artifacts sought by malware is somewhat similar to the classic "vaccination" 

idea existing since mid-1990's, but at the moment only Minerva Labs' products achieve a similar effect 

by simulating an environment hostile  to malware on each endpoint on an enterprise scale. 

  

                                                           
15 https://malwr.com/analysis/ODUyMWRjYzc4Zjg2NDViYWEyM2FhODRhYmRjNTAzNjI/  

http://www.minerva-labs.com/
https://malwr.com/analysis/ODUyMWRjYzc4Zjg2NDViYWEyM2FhODRhYmRjNTAzNjI/


 

research[AT]minerva-labs.com www.minerva-labs.com  21 
 

Conclusions 
We started this paper with a comparison between malware authors and traditional criminals. We 

found that in fact many malware authors are similar to legitimate software companies. They aspire to 

be a profitable venture either by running a shady operation of their own or like in the malware as a 

service (or MaaS) "business model"– and offer a superior product to their clients. 

Evasive techniques are just one aspect of malware, but they are unique. At the moment we are witness 

to a direct arms race between "good and evil", with each new malware adding more and more 

sophisticated tests to be performed prior to the deployment of a payload. Internal competition 

between "malware vendors" just increases the numbers of techniques added to malware, as 

"clientele" often prefer the product offering them the ones containing the highest count of evasion 

techniques. 

This explosion in the number of evasive techniques looks frightening at first sight but it creates new 

opportunities for defenders as well. Minerva's unique approach of simulating an environment hostile 

to evasive malware, takes advantage of malware paranoia and forces it to pick its poison. Does it 

terminate while trying to evade detection or perhaps give up on evasive techniques and get caught. 

The fact that only a single artifact searched by a malware is required in order to halt its execution 

makes Minerva's approach very potent and inspires optimism about the future of the war on malware. 

http://www.minerva-labs.com/

