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ABSTRACT

The OpenEEmeter is an open-source library for calculating normalized metered energy savings esti-
mates resulting from building energy efficiency upgrades. This document describes the methods used
by the OpenEEmeter to calculate savings, for both billing and AMI (Smart Meter) usage data, and
quantifies the accuracy of the models using real and simulated data.

1. INTRODUCTION

The OpenEEmeter is a software library which performs
automated savings estimation for building energy effi-
ciency projects. The goal of the OpenEEmeter project
and its lead developer, Open Energy Efficiency Inc., is
to offer the community a fully transparent and open-
source implementation of industry-standard automated
Measurement and Verification (M&V) methods which
can be used, for example, as part of pay-for-performance
efficiency programs.

The types of efficiency projects for which estimates
may be computed range from single measures (such as ef-
ficient lighting installation or HVAC upgrades) to whole-
building upgrades. The Meter focuses on estimating site-
level normalized metered savings, not on estimating net
savings or on program evaluation; attributing savings to
particular measures is beyond the scope of the software
at the present time.

In this document, we describe and assess the M&V
methodology implemented in the OpenEEmeter. We
provide an overview of the key terminology, concepts,
and algorithms, and discuss the implementation as ap-
plied to billing and AMI usage data. We also provide
an assessment of the OpenEEmeter’s performance using
electricity and natural gas data from 1000 single-family
homes in California.

2. TERMINOLOGY AND CONCEPTS

From the perspective of the OpenEEmeter, an energy
efficiency project is an intervention undertaken at a sin-
gle site (at which there may be multiple physical meters)
over the course of a known period of time. The time
prior to the intervention is referred to as the baseline
period, the time during the intervention as the project
period, and the time after the intervention as the report-
ing period. In the case where a single site has a series of
multiple interventions, users may choose to combine the
interventions into a single project period, or to analyze
each intervention separately.

Site energy usage can be usefully broken down into a
base load, heating, and cooling component. By defini-
tion, the base load is independent of weather conditions,
while the heating and cooling components depend on the
exterior temperature.

In accordance with industry standards, the heating
component is modeled with respect to heating degree days
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(HDD):
HDDi = min(TH,x − Ti, 0), (1)

where TH,x is the heating balance point temperature for
the xth period (baseline or reporting), Ti is the average
exterior dry bulb temperature over the course of day i.

The cooling component is analogously modeled using
cooling degree days (CDD):

CDDi = min(Ti − TC,x, 0), (2)

where TC,x is the cooling balance point temperature for
the xth period. The cooling balance point, which intu-
itively can be thought of as the set point of the building’s
air conditioner thermostat, is required to be greater than
or equal to the heating balance point temperature.

The energy usage for each site is broken down into one
or more traces, i.e., measured energy usages as a function
of time from a single source (generally a gas or electric
meter). For a hypothetical home with a single electric
trace and measurable heating and cooling components,
one can model its baseline energy usage on day i as

˜usageb,i = µb + βH,bHDDi + βC,bCDDi + εi (3)

where µb is the baseline period base load component,
βH,b and βC,b the heating and cooling coefficients for the
baseline period, and εi the error term. One can then
separately model the reporting period energy usage on
day j as

˜usager,j = µr + βH,rHDDj + βC,rCDDj + εj (4)

where the terms are analogously defined.
Once such models have been determined for the base-

line and reporting periods, the weather-normalized sav-
ings can be estimated over any relevant period. For ex-
ample, it is common to calculate the annualized weather
normalized savings as∑

i

˜usageb,i − ˜usager,i (5)

where the sum is taken over an entire year, and where
the CDD and HDD values for each day are calculated
using standard normal year weather data sets such as
TMY3. Alternatively, one might choose to calculate the
total gross normalized metered savings as∑

i

˜usageb,i − usager,i (6)
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where the sum is taken over the reporting period (or a
subset thereof), CDD and HDD are calculated using the
observed site temperatures, and usager,i is the observed
(rather than modeled) reporting period usage on day i.

The OpenEEmeter, therefore, must perform several
steps for each site:

• Load usage data and account for estimated read-
ings.

• Load project start and end dates, and split us-
age data accordingly; using information about the
project site (generally its postal code), select and
load the appropriate weather observations.

• Check for data sufficiency to ensure that valid mod-
els can be derived for the baseline and reporting
periods.

• For the project baseline period, determine the ap-
propriate usage model, which may include µb, βH,b,
βC,b, TH,b, and TC,b.

• For the project reporting period, determine the ap-
propriate usage model, which may include µr, βH,r,
βC,r, TH,r, and TC,r.

• Calculate the relevant aggregate savings estimates.

In the next section, we discuss these steps in specific
detail.

3. METHODOLOGY

The OpenEEmeter uses an energy trace as its funda-
mental unit of analysis. It accepts as inputs the trace’s
usage data, the site’s temperature data over the rele-
vant time period, and project data such as project start
and end dates. Multiple models are fit using ordinary
least squares, and are tested for qualification against
the trace’s baseline and reporting periods; the qualify-
ing model with the highest R2 is then identified. These
baseline and reporting models are then used to generate
savings estimates.

Billing period data and AMI data are handled by two
separate but similar models (CaltrackMonthlyModel
and CaltrackDailyModel, respectively). Differences be-
tween the two will be noted below.

3.1. Data

Usage data is accepted by the OpenEEmeter models
in the following form:

Timestamp: The beginning of the measurement period.

Usage: The metered usage for the measurement period.

Temperature: The mean temperature in degrees
Fahrenheit during the measurement period.

The measurement periods for a trace are assumed to be
complete–i.e., the first measurement period ends at the
beginning of the second measurement period. If the mea-
surement periods are not of consistent periodicity (for ex-
ample if they represent monthly billing cycles as opposed
to daily, hourly, or 15-minutely AMI data), the trace

should be terminated using a timestamp with NULL us-
age that represents the end of the last measurement pe-
riod; if this entry is not included, then the last measure-
ment period in the trace will be discarded.

Note that the OpenEEmeter provides optional
formatter helper classes to handle both AMI and billing
data, and to deal with estimated readings; see the
ReadTheDocs documentation for further information.
The monthly model accepts properly-formatted AMI or
billing data, while the daily model accepts AMI data
only.

3.2. Project data

If the OpenEEmeter is to estimate savings for a given
trace, it is required that project start and end dates be
provided. The baseline period is then defined as all data
prior to the start date, and the reporting period as all
data subsequent to the end date, exclusive. Site location
information in the form of a ZIP code is also required
in order to identify the appropriate weather station and
normal year weather.

3.3. Data sufficiency

Data sufficiency requirements are imposed on both the
baseline and reporting period before the model is fit.
First, the trace length is required to be greater than or
equal to min contiguous months, which by default is set
to 12. Therefore, by default, traces of less than a year in
length result in an error. For baseline periods, the con-
tiguous months must end immediately before the project
start date; for reporting periods, they must begin im-
mediately after the project start date. The sum of the
entire trace is also required to be greater than 0.01 in its
unit of measure.

Additional sufficiency requirements are imposed by the
monthly model. For each billing period, it is required
that there be 15 or more days of valid usage and tem-
perature data. If billing data is provided, only the latter
requirement is operative.

3.4. Modeling

For each billing and reporting period, up to four models
are tested for qualification. All models are fit using ordi-
nary least squares. The first is an intercept-only model,

ũsagei = µ+ εi, (7)

which by construction has an R2 value of 0.0.
The second model tested is the HDD-only model:

ũsagei = µ+ βHHDDi + εi. (8)

The balance point temperature for computing HDD is
optionally determined by a grid search between 55 and
65 degrees Fahrenheit, inclusive. If the grid search is
enabled, the model is fit for each qualifying candidate
balance point, and the balance point with the best R2 is
selected. To qualify as a candidate balance point, there
must be at least 10 days with non-zero HDD and a total
HDD of at least 20 over the full baseline or reporting
period, and the resulting µ and βH must be nonnegative.

If the option fit cdd is set equal to True, as it is by
default for electric (but not natural gas) traces, then two
additional models are tested:

ũsagei = µ+ βCCDDi + εi (9)
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and
ũsagei = µ+ βHHDDi + βCCDDi + εi. (10)

As with the heating degree day balance point, the cooling
degree day balance point can optionally be chosen using
a grid search, where here the allowed range is from 65
to 75 degrees Fahrenheit, inclusive. The same qualifica-
tions are applied to candidate cooling degree day balance
points as for heating degree day balance points.

Of the two or four candidate models which are fit for
a given modeling period, each is tested for qualification.
A model qualifies if the intercept and heating/cooling
coefficients are nonnegative, and if the p-values for all
parameters are less than 0.1. The qualifying model with
the highest value of R2 is chosen as the best-fit qualifying
model.

3.5. Savings estimation

Savings may be estimated over any period of time
where temperatures are available. Two common choices
are the normal year savings, and the reporting period
savings. Both involve out-of-sample predictions for at
least one model; to estimate the error for each point in
the out-of-sample predictions, we first define the mean
squared error as

s2 =
∑ (usagei − ũsagei)

2

(N − k)
(11)

where k is the number of degrees of freedom (1 for
intercept-only, 2 for HDD-only, etc.). Then the predic-
tion variance for out-of-sample data x0 is given by

V̂s = x0(X ′X)−1x′0 + s2 (12)

where (X ′X)−1 is the parameter variance-covariance ma-
trix estimated from the OLS fit.

Normal year savings— To compute normal year savings,
both the baseline and reporting best-fit qualifying models
must be determined. Each model is then used to predict
usage given the normal year temperatures, and the differ-
ence between the sums of the predictions then represents
the savings estimate, and the variances of the sums and
differences are computed in the usual way. Days without
a defined normal year temperature are ignored.

Reporting period savings— To compute reporting period
savings, only the baseline period best-fit qualifying model
must be determined. The model is then used to predict
usage during the reporting period, and the sum of the
actual measured usage is subtracted from the sum of the
predicted usage to determine the savings. The actual
measured usage is assumed to have a variance of zero.
Days without a reporting period temperature or usage
estimate are ignored.

4. VALIDATION

In order to assess the performance of the OpenEEmeter
model, we obtained a set of 1000 anonymized electric and
natural gas traces from single-family homes in California.
At least two years of baseline period data were provided
for each home in the validation data set, as well as at
least one year of reporting period data. Since the true
savings from each project is unknown, we perform our
assessment by selecting, for each home, the baseline data

Table 1
Validation results for 1000-home samples

Fuel CV(RMSE) NMBE
25% 50% 75% 25% 50% 75%

Electric 0.28 0.37 0.53 -0.12 -0.02 0.07
Gas 0.53 0.69 0.90 -0.20 -0.05 0.05

from the year prior to the project start date as the testing
data, and the baseline data from two years prior to the
project start date through one year prior to the project
start date as the training data.

Each home in the validation data set was analyzed
using the algorithms described in Section 3, with the
training data as the “baseline” and the testing data as
the “reporting” period. The reporting period savings
was calculated for each home, and the CV(RMSE) and
NMBE were calculated as a measure of model perfor-
mance. CV(RMSE) is defined as

CV(RMSE) =

√
1
N

∑N
i (usagei − ũsagei)

2

mean(usage)
(13)

and NMBE as

NMBE =
1
N

∑N
i (usagei − ũsagei)

mean(usage)
(14)

where usage is the observed usage in the testing period
and ũsage is the predicted usage in the testing period
using the training period model. See Granderson (2015)
for further details and justification.

The results are presented in Table 1. The median,
25th, and 75th percentile CV(RMSE) and NMBE are
shown across the 1000-home sample. For these homes,
both the NMBE and the total portfolio savings suggest
a general downward trend in energy usage, slightly more
pronounced for natural gas. However, the NMBE and
CV(RMS) values compare favorably with similar analy-
ses (see for example Granderson (2015)).

The Open Energy Efficiency team has tested several
variations on the model presented in this work, for ex-
ample by including calendar effects and using alternative
regression techniques. Using a robust regression algo-
rithm that minimizes the Huber-t statistic rather than
the mean-square error produced an NMBE value slightly
nearer zero (-0.006 rather than -0.02 for the electric val-
idation data set), but had little effect on CV(RMSE)
and increased computational cost by a factor of approx-
imately three; calendar effects produced marginal im-
provements at best, and resulted in over-fitting in some
cases where regularization was not applied. None of the
variations we tested were deemed compelling enough to
include at the present time, though the option to use ro-
bust regression in place of ordinary least-squares may be
offered in future versions of the software.

5. CONCLUSIONS

The OpenEEmeter is intended to serve as an open,
validated, industry-standard set of methods to be incor-
porated into business models, analyses, and program de-
sign and operation. The metered savings estimates can
be used in a variety of commercial applications, such as
pay-for-performance programs; and can also be used as
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the basis for further analysis, such as EM&V. For ex-
ample, metered savings estimates may be used as depen-
dent variables in regression analyses to attribute savings
to individual measures, or computed for appropriately-
constructed comparison groups for program evaluation.

The methods described in this document are used by
the OpenEEmeter to produce weather-normalized me-
tered savings estimates for energy efficiency interventions
in single-family residential homes. These methods can
be readily extended to apply to multifamily properties,

which the Open Energy Efficiency team has tested in co-
operation with NYSERDA. With additional extensions
to account for business days, estimations may also be
produced for small and medium businesses; the team ex-
pects to implement these extensions as validation data
becomes available.
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