
1

Making the Case for Using Analytica® for System Dynamics Modeling:
A Reference Guide and Comparison with Classical Platforms

Cory Welch a

a Navigant Consulting, Inc., cory.welch@navigant.com, welch.cory@gmail.com

Abstract

This paper serves as a reference guide for practitioners or theorists who wish to develop System
Dynamics (SD) models that are multi-dimensional, integrate System Dynamics with optimization (linear
or nonlinear) methods, or require a sophisticated treatment of uncertainty. The paper presents the
Analytica®1 software platform because its flexibility, supported by its array abstraction, combined with
its powerful optimization and uncertainty analysis capability, make it more convenient for these
applications than classical SD software platforms. I discuss the similarities, differences, advantages, and
disadvantages of using Analytica and classical SD software for System Dynamics modeling. I describe
how, in some applications, Analytica provides capabilities not currently present in classical SD software;
in other applications, complex models can be developed with less effort and greater flexibility. Finally, I
offer a generalized derivation of how to initialize an aging chain under conditions of historic growth,
including an example of its implementation using array abstraction in Analytica.

Keywords: system dynamics, optimization, uncertainty, multi-method modeling, Analytica, delay
function, aging chain, stock initialization.

Introduction

Though many software platforms have been used over the years to develop System Dynamics (SD)
models, Vensim2 and Stella3 stand out as what I refer to in this paper as the classical SD platforms. Their
ease of use, visual modeling interface, declarative language, and prominence in education make them the
tools of choice for many practitioners and theorists. Other tools (e.g., AnyLogic, R, Python, Matlab) offer
some advantages relative to classic SD platforms, but tend to be less user-friendly and come with
additional overhead of required programming skills.

Ten years ago while working at the National Renewable Energy Laboratory (NREL), I was introduced to
the Analytica modeling platform when it was selected by NREL, after an extensive software search, as the
application most suited to development of a new stochastic, dynamic, energy-economy model (NREL
2016). After realizing that Analytica’s modeling environment shared many attributes with classical SD
platforms (e.g., visual icon-based modeling interface, declarative language, ease of use), but also offered
many advantages when dealing with multi-dimensional and stochastic analyses, I began using it for all my
modeling. In the ten years since, I have used Analytica in over thirty modeling projects, about half of
which have applied System Dynamics concepts. Clients have included large electric and gas utilities,
utility regulatory agencies, non-profit conservation agencies, the U.S Department of Energy, product
manufacturers, and national laboratories.

1 www.lumina.com
2 www.vensim.com
3 www.iseesystems.com

mailto:cory.welch@navigant.com
mailto:welch.cory@gmail.com
http://www.lumina.com/
http://www.vensim.com/
http://www.iseesystems.com/

2

After a decade of modeling in Analytica, I hope to introduce others to its advantages and relevance for
System Dynamics. In some applications, it permits more sophisticated analyses than classical SD
platforms are currently capable of, yet with a similar level of user-friendliness and knowledge required to
formulate models. In other applications, it enables building complex models with substantially less effort
and with greater flexibility than in classical SD platforms, as I will demonstrate in this paper. I suggest
that Analytica can complement rather than replace classical SD software tools, which are well-suited for
many but not all applications.

Constructing a System Dynamics Model in Analytica

The primary difference between Analytica and classical SD software, when developing a dynamic model,
lies with how a stock is constructed. In classical SD software, the underlying software architecture
automatically integrates all inflows and outflows for each stock variable. Stock variables have a different
input structure and are signified by a distinct icon, typically a box. In contrast in Analytica, stock and
flow variables do not have distinct structures or icons, but rather require the modeler to distinguish
between the two in the equation itself. The modeler can change the color of stock and flow “nodes” to
facilitate ease of recognition, as shown below (where white boxes depict stocks and green boxes depict
flows). Straight black unidirectional arrows between nodes signify a dependency relationship (similar to
curved arrows in Vensim), and gray arrows (as exist between Births and Population below) signify the
presence of a dynamic dependency between two variables.

 Classical SD Diagram Analytica Diagram

Figure 1. Comparison of Model Diagrams – Classical SD Software (e.g., Vensim) and Analytica

All integration of stocks in classical SD software is controlled under the hood, meaning that the modeler
need not think about the mechanics of numerical integration. Inflows and outflows connected to the stock
are assumed to be continuous differential equations (e.g., dStock / dt = X) and are also signified by a
distinct icon (typically resembling a valve, which controls the flow to and from the stock). The stock is
calculated by numerically integrating those rate equations over time. Classical SD software provides
several options for numerical integration (e.g., Euler, Runge-Kutta), permitting the modeler to use more
sophisticated methods if numerical integration error is a concern in the system being modeled. Typically
in System Dynamics modeling, especially of social or human systems, Euler integration is sufficiently
accurate (Sterman, 2000, p. 911).

Developing a dynamic model in Analytica requires that the user explicitly construct the numerical
integration within the equation of any stock variable. The simplest method of doing so entails Euler
integration in conjunction with the Dynamic4 function in Analytica, as illustrated in the first equation

4 http://wiki.analytica.com/index.php?title=Dynamic_function

http://wiki.analytica.com/index.php?title=Dynamic_function

3

below.5 Those familiar with Euler integration will recognize that the value of the stock and flows in the
previous time step are always used in calculating the value of the stock in the current time step. While the
Dynamic function in Analytica is quite flexible, and is not necessarily constrained to the structure given
below, I recommend consistent use of the formulation in Table 1 when constructing System Dynamics
models (which often have numerous feedbacks) to avoid potential pitfalls with cyclic dependencies
among variables and to maximize the similarity between classical SD models and those built in Analytica.

For illustration, I provide below how equations in Analytica compare with those in Vensim, though the
construct is similar in other classical SD platforms.

Variable Vensim Analytica Units
Population INTEG6(Births –

Deaths, Initial
Population)

Dynamic(InitialPopulation, Self[Time – 1]7 +
TimeStep8 * (Births[Time – 1] – Deaths[Time – 1]))

People

Births Birth Fraction *
Population

Same People/Year

Deaths Population / Average
Lifetime

Same People/Year

Initial Population 1000 Same People
Initial Time 0 Same Years
Final Time 100 Same Years
Time Step 0.25 Same Years
Time9,10 In Model Settings Sequence(InitialTime, FinalTime, TimeStep) Years

Table 1. Comparison of Equations in Vensim and Analytica for a Simple Dynamic Model

Notice that the only equation that differs between the Analytica model above and the model constructed
in Vensim is the stock equation. Rate equations, intermediate variables, and constants are identical,
though the time sequence is constructed in a different manner, as shown in Table 1.

Using the Analytica stock equation specified in Table 1, one can develop an SD model of any degree of
dynamic complexity, incorporating feedbacks and delays just as with classical SD software. As should be
apparent, there is very little marginal effort required to create a stock variable using explicit Euler
integration in Analytica.

5 The author has not attempted to employ other numerical integration methods, such as Runge-Kutta, in Analytica.
6 The INTEG notation is inherent to the stock variable and signifies that the expression in the variable will be
integrated over time. The modeler need not input the INTEG function explicitly, as every stock variable has the
INTEG function already embedded in it.
7 In the equation for Population, the [Time – 1] notation signifies the value of those variables in the previous time
step (as opposed to the value of the variable one year prior, since the time step could be less than or greater than one
year). The Self notation is reserved for variables using the Dynamic function and is simply a method permitting self-
referral (e.g., at a previous time). You can use the actual identifier, or variable name, of the stock in place of Self.
8 It is not technically required to explicitly use a time step in a stock equation in Analytica. However, including it in
stock equations and in the definition of the Time variable makes it clear that flow variables are differential rate
equations in continuous time, as traditional in SD. It also lets you easily vary the time step, to which SD modelers
are accustomed.
9 Initial Time, Final Time, and Time Step are input via the Models/Settings menu in Vensim. The time sequence
requires that the time step be the same throughout the simulation.
10 The time sequence in Analytica is explicitly coded with the Sequence function. The InitialTime and FinalTime
variables are specified through creation of separate “constant” nodes. You may also specify Time in other ways, for
instance with a time step that varies over the simulation.

4

Similarities between Analytica and Classical SD Software

Though Analytica and classical SD software products were originally developed for different purposes,
Analytica shares many attributes with classical SD platforms that facilitate good modeling practice as
espoused by the System Dynamics community. These are the most salient similarities.

Similarity #1: Visual, Icon-Based Modeling Environment

As is evident above in Figure 1, both Analytica and classical SD software employ an icon-based visual
modeling environment, which permits modelers and clients to define and visualize the interrelationships
among model variables. This feature facilitates transparency. Models are much easier to navigate and
understand than in typical programing languages, which often require wading through hundreds or
thousands of lines of code to understand their logic. Model diagrams (which Analytica terms “influence
diagrams”) are easy to create using drag-and-drop methods. In both platforms, you can access the
underlying equations by clicking each variable directly in the diagram.

Similarity #2: Declarative Language

Both platforms use a purely declarative11 language, meaning that each variable is defined by an equation
or expression in terms of other variables. The modeler does not have to specify the flow of control. The
platform automatically manages the sequence in which to calculate variables based on consistency and
efficiency. Thus, they require no programming in the traditional sense. This also makes it much easier to
write, understand, and debug models than with traditional imperative or procedural languages.

Similarity #3: Internal Documentation

Another key feature of both platforms is the ease of internally documenting every equation with a
comment or description, and specifying the units of each variable.12 Good System Dynamics modeling
practice dictates that every variable in a model have a description and that units be clearly specified
(Sterman, 2000, p. 852), to facilitate transparency and understanding. Figure 2 compares the object
windows for a variable in Analytica and Vensim. They both contain fields for Description/Comment,
Units, and Definition/Equations, and Domain (Min and Max in Vensim).

11 http://vensim.com/the-next-great-thing/
12 Note that some classical SD platforms have the capability to check units of each variable for internal consistency,
a convenient feature that prevents unit inconsistency errors. Analytica does not have this feature.

http://vensim.com/the-next-great-thing/

5

 Analytica Vensim

Figure 2. Variable Object Window in Analytica (left) and Vensim (right)

Other Similarities between Analytica and Classical SD Software

Several other similarities between Analytica and classical SD platforms should be reassuring to System
Dynamics modelers. Both enable users to easily:

• create graphical user interfaces, permitting ready access to model inputs and outputs,
• trace model logic and dependencies among variables, and
• share models through an online interface without substantial model modification or programing

required.

Advantages of Analytica

Analytica was originally developed by Dr. Max Henrion in the mid-1990s to efficiently handle multi-
dimensional analyses (a limitation of spreadsheets) and to better address uncertainty and risk.13 It has
since been refined to incorporate advanced optimization and other capabilities. Here I describe several
features I have found to be especially convenient in the development of System Dynamics models.

Analytica Advantage #1: Array Abstraction

Arguably the most powerful and differentiating feature of Analytica is array abstraction: You can change
any variable from a scalar to a vector, or to a multi-dimensional array, and the rest of the model
automatically adapts accordingly. The ease with which you can do this in Analytica is unparalleled,
owing to its proprietary Intelligent Arrays™ algorithm. This algorithm automatically propagates the
dimensionality of any data input or intermediate variable to all downstream variables, requiring no

13 https://en.wikipedia.org/wiki/Analytica_(software)#cite_note-83

https://en.wikipedia.org/wiki/Analytica_(software)#cite_note-83

6

additional changes to variables carrying the dimensions. This capability differs dramatically from
constructing multi-dimensional analyses in classical SD software using subscripts (in Vensim, for
instance), which requires the modeler to ensure every equation carrying the desired dimensionality
contains all appropriate subscripts. While it is feasible to construct multi-dimensional models in classical
SD software platforms, it is considerably more difficult and less transparent than in Analytica, as
illustrated in these examples.

The equation for the value calculated in Figure 3, for instance, is quite simple – it just adds two variables.
However, the summed variables are both arrays with multiple dimensions, with indexes14 including
Technologies, Applications, Lumen Bins, Housing Types, and Scenarios. So, the output is also
dimensioned by these indexes, as illustrated in Figure 4, even though the equation does not mention those
indexes.

Figure 3. Illustration of a Simple Equation in Analytica, though Output is Multi-Dimensional

If you expand or reduce the dimensions of the input nodes, the equation for Total Equipment Stock EOY
remains unchanged due to array abstraction. I provide an illustration of the output of this node in
graphical form in Figure 4. You can select any two-dimensional slice in the result graph or table using the
arrows to the right of each index, making visual inspection of every dimension of the model a trivial
matter. You can rearrange the axes and key to pivot, stack or sort the output along different dimensions
with just a button click. For instance, the figure below shows the same output node viewed in two ways
(one showing all Lumen Bins, stacked by Technologies, and the other showing only the LED
Technology, stacked by Housing Types). The ability to rapidly visually inspect multi-dimensional output
facilitates model transparency in granular models and accelerates learning.

14 In Analytica, the various dimensions along which variables are calculated are referred to as indexes, which are
analogous to, but more flexible than, subscripts in classical SD software, such as Vensim.

7

Figure 4. Automated Multi-Dimensional Output in Analytica: Two Different Views of the Same Variable

This output is also automatically viewable as a multi-dimensional data table (as is every variable in the
model), each dimension of which is also easily accessible, as illustrated below.

Figure 5. Illustration of a Multi-Dimensional Output Table of a Variable In Analytica

In contrast, a similar equation in Vensim requires you to specify every subscript for each variable, for
example:

Total Equipment Stock EOY = Exist_Equip_Stock_EOY[Technologies, Applications, Lumen
Bins, Scenario, Housing Types] + New_Equip_Stock_EOY[Technologies, Applications,
Lumen Bins, Scenario, Housing Types]

More significantly, every downstream variable carrying those dimensions would also have to specify
every subscript, meaning that adding or removing a dimension requires you to modify many equations in
the model (possibly dozens or hundreds). Creating equations that manipulate or transform multi-
dimensional variables is much easier with Analytica’s array abstraction than manipulating multi-

8

dimensional variables in classical SD software (e.g., using the VECTOR ELM MAP and other functions
in Vensim).

Additionally, it is difficult in classical SD software to view the many dimensions of the output, which
makes understanding the model at that level of granularity challenging. For illustration, I have excerpted
data output from a Vensim model that forecasts spatial adoption of hydrogen fuel cell vehicles (Struben
2006). The multi-dimensional data are only viewable in flat format in Vensim, as illustrated in Figure 6.
Graphically, it is impossible to view more than a subset of the data, and automatically slicing the data
along the different dimensions is not possible as it is in Analytica. Rather, to visualize and understand
these output, I had to export the output into Microsoft Excel, rearrange it to be two-dimensional, and then
manually build a graph to display it (Welch 2006). Such effort to view and understand the output of a
multi-dimensional model slows the development and learning processes. Other classical SD software
platforms suffer a similar affliction.

Figure 6. Illustration of Multi-Dimensional Data Viewing Limitations in Vensim. Graphic Source (Struben 2006 Model)

Often a modeler is not sure when starting a model which and how many dimensions will be needed to
achieve adequate accuracy. Sometimes client requirements change during a modeling engagement. The
ability to modify dimensions so easily with Analytica makes it much easier to adapt the model detail as
needs dictate. In one engagement, my team transformed a sector-level (e.g., residential, commercial)
analysis of solar photovoltaic adoption using Bass (1969) diffusion (as presented in Sterman, 2000, p.
332) into to a spatial model, simply by disaggregating key inputs such as customer counts and initial
installations to the electric utility substation level. This change was easy to implement, only requiring
modification of a few key inputs. The rest of the model then automatically expanded by the added input
dimension – including every downstream variable, output table, and output graphic. In another case, we
originally modeled the efficient lighting market in the Northwest U.S. (using Bass Diffusion overlaid on a
stock turnover construct) at the level of building type (e.g., single-family homes, retail, offices). During
the engagement, my team determined that data availability and accuracy did not warrant such
disaggregation, so the inputs were collapsed so that they were only at the sector level. Such changes are

9

made easily in Analytica due to array abstraction, but often would require reconstructive surgery in
classical SD software platforms.

As should be apparent, the ability of Analytica to deal with multi-dimensional analyses affords the
modeler and the client a great deal of flexibility in addition to efficiency of model construction (meaning
more time can be spent understanding the actual problem).

Analytica Advantage #2: Structured Optimization

Another key advantage of the Analytica software platform is its ability to perform what it terms
“structured optimization.” All properties of array abstraction extend to the formulation of optimization
problems, which are easy to formulate. This feature facilitates their creation and modification in several
ways. First, many optimization problems involve multi-dimensional decision variables and constraints.
With structured optimization, you can specify a vector or array of decision variables and constraints that
are automatically recognized by the optimization engine. Likewise, you can easily construct multi-
dimensional upper and lower bounds on the decision variables. For instance, in a dynamic optimization
model I developed for the Northwest Power and Conservation Council (NPCC 2016), one set of decision
variables involved the number of electric resources to be added in each of several time periods. This
decision variable was indexed by the resource type and by the start time for resource construction. As the
user adds or subtracts technologies (or time periods for the resource addition decision), the decision
variables and constraints automatically adjust, just as other variables do with array abstraction. Further,
the user can easily modify the length of each of these indexes through a user interface. Figure 7 shows
how the user can select which time periods to include in the decision variables.

 Period Selection Resulting Decision Variable Array

Figure 7. Example of Multi-Dimensional Decision Variable in a System Dynamics Model

Structured optimization combined with array abstraction permits the modeler to solve numerous
optimization problems within a single dynamic model. This powerful feature provides a degree of
modeling flexibility not available in classical SD software tools. In one engagement with a large electric
utility, I used this capability to solve two distinct optimizations in every time step of a Bass diffusion
model to simulate adoption of rooftop solar photovoltaic (PV) and battery storage systems. The first was a
linear program (LP) that calculated the optimal dispatch of a battery storage system under electricity rates

10

that varied by time of day. This LP incorporated a distinct but integrated dynamic sub-model, employing
Analytica’s Dynamic function along an orthogonal time index (the hour in a representative week of
system operation). The sub-model simulated the battery stage-of-charge (the stock) and rates of charging
and discharging (the flows). An illustration of the solution to a single LP (for one time step in the larger
dynamic model) is provided in Figure 8, which shows an optimal battery charge and discharge strategy
under a given customer electric load profile, solar PV generation profile, and electric rate structure.

Figure 8. Illustration of One Optimization Output (in One Time Step) in a System Dynamics Model Created in Analytica

with Multiple, Distinct Optimizations

The second optimization was a nonlinear program that solved in each time step for the forecast lease price
at which a solar-plus-storage system could likely be offered by a provider. The calculation used a
discounted cash flow optimization model, which was a function of several variables that changed over
time (e.g., installation costs and tax credits). Finally, the same model employed a third optimization (also
nonlinear) to calibrate coefficients of the Bass diffusion model to ten years of historical adoption data.
The integration of three separate optimization problems, each solved along a different time dimension, in
a single dynamic model, is not practicable in classical SD software. This capability was critical to
developing a model that could reflect the real-world economics of this rapidly changing technology, a
prerequisite to forecasting adoption. Figure 9 illustrates how literally hundreds of optimization problems
were solved within a single dynamic model. Each «LP» symbol in the table below represents a separate
linear program in the dynamic model, each of which has a wealth of information generated by an LP
definition that is automatically array abstracted over adoption year, calendar month, electricity rate
structure scenario, and customer sector. What is powerful and convenient is that all the information below
was automatically generated by array abstraction through a single definition node for the LP. An example
of the definition that generated the multi-dimensional optimization structure is provided for illustration in
Figure 9. Notice the simplicity of the definition, which only contains the variable identifiers for the
objective function, decision variables, and constraints, each of which is multi-dimensional.

0.0

1.0

2.0

3.0

4.0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Ca
pa

ci
ty

 (k
W

-D
C)

Hour of Representative Week
Gross Load Battery Discharge PV Consumption

PV Stored In Battery Excess PV PV Generation

11

Figure 9. Illustration of Structured Optimization in Analytica. Hundreds of Optimizations Were Solved in a Single

System Dynamics Model.

Analytica Advantage #3: Enhanced Uncertainty Analysis Capability

Classical SD software has some capability to incorporate uncertainty analysis (e.g., Monte Carlo
sensitivity). However, I find that Analytica offers several advantages to modelers who are especially
concerned with accounting for uncertainty and risk, as Analytica was built with a distinct focus on these
issues. For instance, Analytica offers:

• a larger selection of standard and custom probability distribution functions,
• a wider range of graphical or tabular ways to display uncertain (in every time step of the

simulation), such as:
o statistics (mean, median, percentiles, etc.),
o probability density and cumulative distribution functions,
o data points from the Monte Carlo simulations,

• ability to create correlations among random variables,
• ability to extract specific statistics from any random output for use in downstream equations (e.g.,

mean values or percentiles of output distributions for objective functions of optimizations),
• ability to calculate risk metrics, such as value at risk, conditional value at risk, etc.,
• ability to slice and view uncertain output using all array abstraction viewing benefits previously

discussed,
• ability to control the dimensions over which a random variable is uncertain (e.g., along specified

indices).

12

While I do not offer in this paper a detailed comparison of the uncertainty analysis capabilities of
Analytica with those of classical SD software platforms, I provide a few graphics below to give the reader
a sense of the capabilities and user-friendliness of Analytica when creating stochastic models.

Figure 10. Various Uncertainty Inputs and Outputs in Analytica

Other Advantages of using Analytica for System Dynamics Modeling

Analytica has several other features that make life easier for a System Dynamics modeler compared with
classical SD software, such as:

• ease of importing and exporting multi-dimensional data from/to Excel, databases, etc.,
• automated performance profiling (for tracing drivers of run times and memory),
• modular model construction (facilitates navigation, creation of reusable sub-modules, etc.).

Advantages of Classical SD Software, with Example Work-arounds in Analytica

Given that classical SD software is purpose-built for building and analyzing dynamic models, it is not
surprising that those platforms have some advantages relative to Analytica in certain dynamic modeling
applications. If the model is not multi-dimensional, does not have a need to incorporate more than a single
optimization, or has a high degree of dynamic complexity and low detail complexity, classical SD
software may be preferred. I describe below the main advantages of classical SD software platforms over
Analytica for SD applications; I also suggest ways to work around these limitations.

Classical SD software Advantage #1: Visualization of Feedback Loops & Stock/Flow Structure

System Dynamics modelers often represent positive and negative feedback through causal loop diagrams
(Sterman 2000, p. 137), using a series of curved arrows to illustrate the feedback loops. Likewise, they are
accustomed to viewing the stock/flow structure in the form of boxes and valves, with any feedback from a
stock to its flow also conveyed by a curved arrow. In Analytica, the straight arrow structure and lack of

13

distinct stock and flow icons make this depiction more challenging. In one case, I worked around this
limitation by copying and pasting stock/flow images from Vensim onto the Analytica diagram to portray
the structure in a manner more aligned with System Dynamics convention, as illustrated in Figure 11.

 Native Analytica Diagram Modified Analytica Diagram

Figure 11. Stock/Flow Influence Diagram in Analytica (Native and Modified)

Classical SD software Advantage #2: Graphical Creation of Look-up Functions

System Dynamics modeling sometimes employs the use of nonlinear relationships among variables that
are created using a “Lookup” function (also referred to as a table function), which in classical SD
software can be created graphically through a user interface, as illustrated below. This is a convenient
method of creating a user-defined function with an arbitrary relationship between the x and y variables.
Downstream variables can use this nonlinear relationship as a function with an input value for x, and the
output will return the interpolated value for y. For instance, a downstream variable defined in Vensim as:
Production Multiplier = Effect of Energy Function(Input Energy Value), where Input Energy Value =
1.25, would return a value of Production Multiplier = 1.19 with a lookup table defined as shown in Figure
12.

Figure 12. Illustration of a Graphical Lookup Table in Vensim. Source: Vensim Help Manual

In Analytica, you must create the table manually by defining an index for the x-values and an edit table
that provides the y-values corresponding with each x-value. You use an interpolation function to extract
the appropriate value from the table, as in this example:

14

Figure 13. Creation of a Lookup Table in Analytica

Energy_Value := [0, 0.5017, 1, 1.449,2, 2.997, 4]

Effect_of_Energy_on_Prod := Table(Energy_Value)(0,0.5965,1,1.342,1.6,1.781,1.8)

Production_Multiplier := LinearInterp(Energy_Value, Effect_of_Energy_on_,
Input_Energy_Value, Energy_Value)

This nonlinear lookup function in Analytica works fine, but it is more convenient using classical SD
software platforms, which offer graphical creation of Lookup functions.

Classical SD software Advantage #3: Smooths, Delays, and Trending

System Dynamics models by their nature incorporate delays (Sterman 2000, p. 409), including physical
material delays (e.g., the average failure time of a piece of equipment) and information delays (e.g., the
average time for a decision maker to change an opinion based on new data). A number of constructs are
used to model these delays, such as first (and higher) order exponential smoothing, and more complex
expectation trending algorithms (Sterman 1987). Classical SD software contains several compiled
functions that facilitate modeling delays without having to physically construct each stock and flow in the
delay structure. For instance, Vensim contains functions such as SMOOTH, DELAY, and TREND,
among others (e.g., higher order and information SMOOTH and DELAY functions). Analytica does not
have comparable built-in functions. However, it is possible to model any of these delays through explicit
construction of the stocks and flows associated with the delay type desired. In some cases, this approach
offers additional flexibility and accuracy, as I will describe, though at the expense of a nominal additional
formulation effort.

I provide below an example of how one can use array abstraction in Analytica to simulate an Nth-order
material delay (Sterman, 2000, p. 417) (an explicit construction of a material delay represented by the
DELAY3 function in Vensim if N were equal to three), as shown in Figure 14.

15

Figure 14. Illustration of Nth-order Aging Chain, or Material Delay

To facilitate reader understanding and ease of reconstruction, I provide the influence diagram in Figure 15
and the equations in Analytica in Table 2.

Figure 15. Influence Diagram in Analytica for an Nth-Order Material Delay

Variable Analytica Equation Units
Inflow If Vintage = 1 THEN Input ELSE Outflow[Vintage = Vintage – 1] Units/Year
Outflow Level / DL Units/Year
Level Dynamic(Initial_Level, Self[Time – 1]

 + TimeStep * (Inflow[Time – 1] – Outflow[Time – 1]))
Units

Initial_Level Input[@Time = 1] * DL Units
Vintage Sequence(1, Delay_Order_N, 1) Dmnl15
Delay_Order_N 3 Dmnl
Delay_Time 10 Years
DL Delay_Time / Delay_Order_N Years
Delay_N_Output Outflow[Vintage = Delay_Order_N] Years
Input 100 + 100 * (Time >=5) Units/Year
Time Sequence(0, FinalTime, Timestep) Years
FinalTime 40 Years

Table 2. Equations in Analytica for an Nth-Order Material Delay

Figure 16 compares the DelayN output in Analytica with an input starting at 100 units/year, stepping up
to 200 units/year at Time = 5 (where Delay_Time = 10 years and Delay_Order_N = 3). The Time
sequence uses the method shown above with Timestep = 0.25 years.

15 Dimensionless

16

Figure 16. Comparison of Input with DelayN Output. N=3, delay time = 10 years.

This formulation, combined with the previous discussion of how to construct a stock, enables you to use
Analytica to recreate any of the typical delay or smoothing structures in classical SD software functions.

Notice that this formulation assumes that stocks and flows in the delay chain begin in dynamic
equilibrium (Sterman 2000, p. 232), consistent with the DELAY3 function in Vensim16. The initial level
of each of the N stocks is the same, and is the product of the initial input and the delay length (DL) of
each stock, consistent with Little’s Law (Little 1961). This construct, while easy to formulate, can be
limiting when simulating a stock that has historically been growing, which is often the case in the real
world. In such a situation, the aging chain would be front-loaded, where upstream stocks are larger than
downstream stocks. In one analysis conducted by Welch and Rogers (2010) of the failure distribution of
residential appliances, we accounted for this by calculating the distribution of initial values of the total
stock into each of the vintages, v, in an aging chain of order N (the order was optimized to fit historical
failure data). Explicitly modeling the aging chain construct in Analytica (as opposed to relying on a
DELAY function) facilitated allocating an estimated total stock quantity to each vintage in the chain,
which avoided undesirable disequilibrium dynamics at the onset of the simulation and improved the
optimization.

If you want to modify the classical SD DELAY formulation to account for situations where stocks were
front-loaded due to historic growth, you would only have to replace the equation for the Initial Level
provided in Table 2 with that provided in Table 3 (the difference relative to the classical DELAY
formulation is highlighted in bold).17 Refer to Appendix 1 for a derivation of this formula (see (1.15)),
and to Appendix 2 for a more generalized derivation of an aging chain that permits having a unique
lifetime for each stock in the aging chain and that also permits an additional outflow from each stock in
the aging chain (e.g., a hazard rate or other similar outflow mechanism).

Variable Analytica Equation Units
Initial_Level Input[@Time = 1] * DL * (1 + Historic_Growth_Rate * DL)^(-Vintage) Units

Table 3. Modified Initialization of Stocks in a Material Delay with Historic Growth (See Derivation in Appendix 1)

16 https://www.vensim.com/documentation/index.html?fn_delay_material.htm
17 Notice the equation simplifies to the classical SD DELAY formulation when the historic_growth_rate = 0.

https://www.vensim.com/documentation/index.html?fn_delay_material.htm

17

Other Advantages of Classical SD Software

Classical SD software platforms offer several other advantages over Analytica for dynamic modeling,
such as:

• causal loop tracing (to facilitate understanding feedbacks, loop dominance, etc.),
• partial dynamic simulation (i.e., excluding certain loops),
• immediate simulation sensitivity viewing (e.g., through SyntheSim in Vensim), and
• automated units checking.

Conclusion

Though modeling projects applying System Dynamics often focus on dynamic complexity (i.e.,
incorporation of all relevant feedback and delays) and attempt to avoid detail complexity, practical
applications of it often require granularity and methods that can be challenging or impossible to
implement using classical SD software tools. Analytica is a powerful, flexible, multi-method tool that
maintains the user-friendliness of classical SD software while enabling the modeler to easily disaggregate
the analysis, integrate complex optimizations along different time scales and dimensions, and address
uncertainty with an ease and flexibility not currently available in other platforms. I recommend that
System Dynamics modelers explore what is possible in Analytica and add it to their arsenal of tools used
for solving real-world problems. I expect that modelers will be surprised with how easily one can build a
complex System Dynamics model in the software with the information provided in this paper, coupled
with a short tutorial of the basics of Analytica. I acknowledge that classical SD software may be preferred
in some applications due to its focus on analyzing complex dynamics, and consider that the appropriate
tool for each model depends on the system being modeled and the problem to be solved. As such, I
suggest that Analytica can complement classical SD modeling software, rather than replace it, and hope
that this paper will facilitate expanding the capabilities of the System Dynamics community.

References

Bass, Frank M. 1969. 'A New Product Growth Model For Consumer Durables', Management Science, 15:
215-27.

Little, John D. C. . 1961. 'A Proof for the Queuing Formula: L= λW', Operations Research, 9: 383-87.
NPCC. 2016. Northwest Power and Conservation Council, Accessed December 26, 2016.

http://www.nwcouncil.org/energy/rpm/rpmonline.
NREL. 2016. 'Welcome to SEDS.', Accessed December 26, 2016. https://seds.nrel.gov/.
Sterman, John D. 1987. 'Expectation Formation in Behavioral Simulation Models', Behavioral Science,

32: 190-211.
———. 2000. Business Dynamics : Systems Thinking and Modeling for a Complex World

(Irwin/McGraw-Hill: Boston).
Struben, Jeroen. 2006. "Identifying challenges for sustained adoption of alternative fuel vehicles and

infrastructure." In Proceedings of the 24th International Conference of the System Dynamics
Society, 119. Nijmegen, The Netherlands: The System Dynamics Society.

Welch, Cory. 2006. "Lesson Learned from Alternative Transportation Fuels: Modeling Transition
Dynamics." In. Golden, CO: National Renewable Energy Laboratory.

Welch, Cory and Rogers, Brad. 2010. "Estimating the Remaining Useful Life of Residential Appliances."
In ACEEE Summer Study on Energy Efficiency in Buildings, 2 316-27. Monterey, CA.

http://www.nwcouncil.org/energy/rpm/rpmonline
https://seds.nrel.gov/

18

Equation Chapter 1 Section 1

Appendix 1:

Derivation of Initialization of an Aging Chain (or Material Delay) Undergoing Steady Growth

Consider and Nth-order aging chain, or material delay, as illustrated in Figure A-1.

Figure A-1. Illustration of an Nth-order Aging Chain, or Material Delay

I define a state of steady-state-growth (SSG) of an aging chain as the point where all inflows, outflows,
and stocks are growing at a constant fractional growth rate per year, g.

Thus, by definition, during SSG, the first derivative of Stock Sv is the stock times the growth rate g, or:

 , where 1,2,...v
v

dS g S v N
dt

= = (1.1)

Additionally, at all times, the first derivative of Stock Sv is equal to the difference between the inflow rate
and the outflow rate, or:

 1
v

v v
dS R R
dt −= − (1.2)

Setting the right-hand-side (RHS) of (1.1) equal to the RHS of (1.2), and rearranging, we get:

 1R v v
v

R S
g

− − = (1.3)

We also know that each outflow rate is defined as:

(/)

v
v

SR
L N

= , where L = mean material lifetime (i.e., average delay time), in years (1.4)

Substituting (1.4) into (1.3), we get:

1

(/) (/)
v v

v

S S
L N L N S

g

− −
= (1.5)

19

Rearranging (1.5) we get the ratio of each stock in the aging chain to its upstream stock:

1

1
(1 /)

v

v

S
S g L N−

=
+ 

 (1.6)

The ratio of each stock to the first stock in the chain is therefore:

(1)

(1)

1

1 (1 /)
(1 /)

v
vv

v

S g L N
S g L N

−
−

=

 
= = + + 





 (1.7)

If we normalize by arbitrarily setting Sv=1 = 1, the value for each stock is then:

 (1)
1(1 /) , when =1v

v vS g L N S−
== +  (1.8)

By definition, the total stock, TS, in all N vintages in the chain is:

 (1)

1 1

 (1 /)
N N

v
v

v v
TS S g L N −

= =

= = +∑ ∑ 
 (1.9)

Defining the allocation factor, AFv, as the ratio of each stock to the total stock, we have:

 (1)

1

 , where (1 /) vv v
v vN

v
v

S FAF F g L N
TS F

−

=

= = = +

∑
 (1.10)

To calculate the initial input, R0, to the aging chain that, in SSG, is consistent with the known total stock,
note that the ratio of each stock’s outflow to the outflow of the upstream stock is the same as the ratio of
each stock to the upstream stock, per (1.6), since each outflow is directly proportional to its stock by a
constant factor, per (1.4). Therefore, we know that:

 0 (1 /)v

v

R g L N
R

= + 
 (1.11)

Substituting (1.4) into (1.11) and rearranging, we get:

 0 (1 /)
(/)

vvSR g L N
L N

= +  (1.12)

Arbitrarily setting v=1 and substituting Sv=1 into (1.10), we get:

 1

1

v N

v
v

TSS
F

=

=

=

∑
 , where Fv is defined per (1.10) (1.13)

20

One can now substitute (1.13) into (1.12), when v=1, and rearrange to get R0 as a function of the input
total stock, TS, in SSG.

 0

1

1
(/)

N

v
v

TS g
L N

R
F

=

 
+ 

 =

∑



 , where Fv is defined per (1.10) (1.14)

Alternately, one can specify each initial stock vintage, Sv, as a function of a known initial input, R0
(inflow to the aging chain) by rearranging (1.12):

 0 (/) (1 /) v
vS R L N g L N −= +   (1.15)

21

Equation Chapter (Next) Section 2
Appendix 2

Derivation of Generalized Initialization of an Aging Chain Undergoing Steady Growth

This appendix derives initial values of an aging chain for a more generalized situation than is provided in
Appendix 1. Specifically, it allows for each stock in the aging chain to have a unique lifetime, and it
allows for an additional outflow (e.g., a stock-specific hazard rate) to be applied to each stock in the aging
chain.

Consider an aging chain with N stocks, each of which can have a unique aging lifetime (Lv) and other
outflow (Ov), as illustrated in Figure A-1.

Figure A-1. Illustration of an Aging Chain

I define a state of steady-state-growth (SSG) of an aging chain as the point where all inflows, outflows,
and stocks are growing at a constant fractional growth rate per year, g.

By definition, during SSG, the first derivative of Stock Sv is the stock times the growth rate g, or:

 , where 1,2,...v
v

dS g S v N
dt

= = (2.1)

Additionally, at all times, the first derivative of Stock Sv is equal to the difference between the inflow rate
and all outflow rates, or:

 1
v

v v v
dS R R O
dt −= − − (2.2)

Setting the right-hand-side (RHS) of (1.1) equal to the RHS of (1.2), and rearranging, we get:

 1R v v v
v

R O S
g

− − −
= (2.3)

We also know that each aging rate is defined as:

 v
v

v

SR
L

= , (2.4)

22

where Lv = mean aging time of stock v.18

And, we know by definition that each other outflow rate is:

 v v vO S H=  , (2.5)

where Hv is the hazard rate (or failure rate), in units of fractional reduction per unit time.19

Substituting (2.4) and (2.5) into (1.3), we get:

 1 1/ /v v v v v v
v

S L S L H S S
g

− − − −
=



 (2.6)

Rearranging (1.5) we get the ratio of each stock in the aging chain to its upstream stock:

1 1

1 , for all 1
(1 /)

v

v v v v

S v
S L g L H− −

= >
+ +

 (2.7)

The ratio of each stock of vintage v to the first stock in the chain, which we define to be factor Fv, is
therefore:

11

1

1, if 1
1 , if 1

(1 /)

v
v

v
i

v v v

i
SF

iS
L g L H=

−

= 
 ≡ =  > + + 

∏


 (2.8)

If we normalize by arbitrarily setting S1 = 1, the value for each stock is then:

 1 , when 1v vS F S= = (2.9)

By definition, the total stock, TS, in all N vintages in the chain is:

1 1

N N

v x
v x

TS S F
= =

= =∑ ∑ , when S1 = 1 (2.10)

Defining the allocation factor, AFv, as the ratio of each stock to the total stock, we have:

1

 v v
v N

x
x

S FAF
TS F

=

= =

∑
 , where F is defined per (2.8) (2.11)

To calculate the initial input, R0, to the aging chain that, in SSG, is consistent with the known total stock,
first substitute (2.5) into (1.3), and then substitute into that result Sv per (2.4) to get:

18 Lv equals LT/N for an Nth-order aging chain of equal delay times per stock vintage, where LT is the mean total
delay time of the entire aging chain.
19 Note that in some aging chain constructs using a hazard rate, the last aging flow, RN, is set to zero (meaning the
only outflow from the last stock is from the other outflow stream, Ov). This can effectively be accomplished using
this set of equations by setting LN = ∞ (or to a sufficiently large number, if your software does not permit specifying
infinity as an input).

23

 1R v v v v v
v v

R H R L R L
g

− − −
=

 

 (2.12)

Rearranging, we get the ratio of each inflow to its downstream inflow:

 1R 1 ()v
v v

v

L g H
R

− = + +
 (2.13)

Thus, we know the ratio of R0 to each Rv must also be:

 0

1

(1 ())
v

v v
iv

R L g H
R =

= + +∏  (2.14)

Substituting (2.4) into (1.11) and rearranging, we get:

 0
1

(1 ())
v

v
v v

iv

SR L g H
L =

= + +∏  (2.15)

Arbitrarily setting v=1, substituting S1 into (1.10), and rearranging, we get:

 1

1

N

x
x

TSS
F

=

=

∑
 , where F is defined per (2.8) (2.16)

One can now substitute (1.13) into (1.12), when v=1, and isolate R0.

 ()
1

0 1 1
11

1

1 1 ()N
i

x
x

TSR L g H
LF =

=

= + +∏
∑

  (2.17)

Equation (2.17) simplifies to provide the initial inflow, R0, as a function of the input total stock, TS, in
SSG:

 0 1
1

1

 1
N

x
x

TSR g H
LF

=

 
= + + 

 ∑


 , where F is defined per (2.8) (2.18)

Alternately, one can specify each initial stock vintage, Sv, as a function of a known initial inflow, R0, by
rearranging (1.12):

 0
1

1
1 ()

v

v v
i i i

S R L
L g H=

 
=  + + 

∏ 



 (2.19)

